Due to an NVIDIA driver bug with the Windows 10 Anniversary Update,
there are an increasingly large number of reports of "Device Removed"
errors and TDRs. When this happens, OBS stops outputting all data
because all graphics functions are failing, and it appears to just
"freeze up" for users.
To temporarily alleviate this issue while waiting for it to be fixed,
the D3D subsystem can be rebuilt when that happens, all assets can be
reloaded to ensure that it can continue functioning (with a minor hiccup
in playback).
To allow rebuilding the entire D3D subsystem, all objects that contain
D3D references must be part of a linked list (with a few exceptions) so
we can quickly traverse them all whenever needed, and all data for those
resources (static resources primarily, such as shaders, textures, index
buffers, vertex buffers) must be stored in RAM so they can be recreated
whenever needed.
Then if D3D reports a "device removed" or "device reset" error, all D3D
references must first be fully released with no stray references; the
linked list must be fully traversed until all references are released.
Then, the linked list must once again be traversed again, and all those
D3D objects must be recreated with the same data and descriptors (which
are now saved in each object). Finally, all states need to be reset.
After that's complete, the device is able to continue functioning almost
as it was before, although the output to recording/stream may get a few
green frames due to texture data being reset.
This will temporarily alleviate the "Device Removed" issue while waiting
for a fix from NVIDIA.
Instead of letting vertex buffer data be freed immediately, store it so
it can be used for rebuilding later. Also, separate the buffer building
to a function.
Unloads all device data and clears all device references. Probably not
necessary, but it's unknown how D3D11 handles this internally so
probably best to be safe.
When DirectX throws error 0x887A0005 (DXGI_ERROR_DEVICE_REMOVED),
Microsoft recommends calling ID3D11Device::GetDeviceRemovedReason to
retrieve a more precise error code.
Closesjp9000/obs-studio#652
This allows the ability to separate the blend states of color and alpha.
The default blend state has also changed so that alpha is always added
together to ensure that the destination image always gets an alpha value
that is actually usable after the operation (for render targets).
Old default state:
color source: GS_BLEND_SRCALPHA, color dest: GS_BLEND_INVSRCALPHA
alpha source: GS_BLEND_SRCALPHA, alpha dest: GS_BLEND_INVSRCALPHA
New default state:
color source: GS_BLEND_SRCALPHA, color dest: GS_BLEND_INVSRCALPHA
alpha source: GS_BLEND_ONE, alpha dest: GS_BLEND_ONE
Someone's going to yell at me about this, but fix vertical alignment for
certain member variables in the main header.
For future reference, if you must use vertical alignment, always give it
plenty of space for the type names to grow in case you need to
add/change variables in the future; don't just align to the 'longest'
value, give it an extra 8-16 spaces for potential future variables.
This is done to prevent having to make commits like this in the future
that sort of pollute the history.
When using an enumeration value with a switch, it needs to be filled out
with all possible values to prevent compiler warnings. This warning is
used to prevent the developer from unintentionally forgetting to add new
enum values to any switches the enum is used on later on. Sadly, only
good compilers actually have this warning (mingw).
Microsoft's compiler doesn't seem to care about warning about things
like initializer list ordering. Mingw actually reports on this to
prevent potential confusion about ordering.
We have a sprintf_s function in mingw-w64, but it's the it won't compile
with visual studio because it's the C11 specification (aka the correct
specification that's not made by morons). Microsoft's version differs
to the specification (and is made by morons), so fall back to sprintf
(note if you can't tell, this commit message was edited by Jim)
The gs_enum_adapters function is an optional implementation to allow
enumeration of available graphics adapters that can be used with the
program. The ID associated with the adapter can be an index or a hash
depending on the implementation.
This adds support for the windows 8+ output duplicator feature which
allows the efficient capturing of a specific monitor connected to the
currently used device.