This is intended to do conversions for interleaved samples, and supports
changing from one DevFmtType to another as well as resampling. It does not
handle remixing channels.
The mixer is more optimized to use the resampling functions directly. However,
this should prove useful for recording with certain backends that won't do the
conversion themselves.
This should cut down on unnecessary quantization noise (however minor) for 8-
and 16-bit samples. Unfortunately a power-of-2 multiple can't be used as easily
for converting float samples to integer, due to integer types having a non-
power-of-2 maximum amplitude (it'd require more per-sample clamping).
This improves fading between HRIRs as sources pan around. In particular, it
improves the issue with individual coefficients having various rounding errors
in the stepping values, as well as issues with interpolating delay values.
It does this by doing two mixing passes for each source. First using the last
coefficients that fade to silence, and then again using the new coefficients
that fade from silence. When added together, it creates a linear fade from one
to the other. Additionally, the gain is applied separately so the individual
coefficients don't step with rounding errors. Although this does increase CPU
cost since it's doing two mixes per source, each mix is a bit cheaper now since
the stepping is simplified to a single gain value, and the overall quality is
improved.
NFC filters currently only work when rendering to ambisonic buffers, which
includes HQ rendering and ambisonic output. There are two new config options:
'decoder/nfc' (default on) enables or disables use of NFC filters globally, and
'decoder/nfc-ref-delay' (default 0) specifies the reference delay parameter for
NFC-HOA rendering with ambisonic output (a value of 0 disables NFC).
Currently, NFC filters rely on having an appropriate value set for
AL_METERS_PER_UNIT to get the correct scaling. HQ rendering uses the averaged
speaker distances as a control/reference, and currently doesn't correct for
individual speaker distances (if the speakers are all equidistant, this is
fine, otherwise per-speaker correction should be done as well).
This has a couple behavioral changes. First and biggest is that querying
AL_BUFFERS_PROCESSED from a source will always return all buffers processed
when in an AL_STOPPED state. Previously all buffers would be set as processed
when first becoming stopped, but newly queued buffers would *not* be indicated
as processed. That old behavior was not compliant with the spec, which
unequivocally states "On a source in the AL_STOPPED state, all buffers are
processed."
Secondly, querying AL_BUFFER on an AL_STREAMING source will now always return
0. Previously it would return the current "active" buffer in the queue, but
there's no basis for that in the spec.
Unsigned 32-bit offsets actually have some potential overhead on 64-bit targets
for pointer/array accesses due to rules on integer wrapping. No idea how much
impact it has in practice, but it's nice to be correct about it.
This necessitates a change in how source updates are handled. Rather than just
being able to update sources when a dependent object state is changed (e.g. a
listener gain change), now all source updates must be proactively provided.
Consequently, apps that do not utilize any deferring (AL_SOFT_defer_updates or
alcSuspendContext/alcProcessContext) may utilize more CPU since it'll be
filling out more update containers for the mixer thread to use.
The upside is that there's less blocking between the app's calling thread and
the mixer thread, particularly for vectors and other multi-value properties
(filters and sends). Deferring behavior when used is also improved, since
updates that shouldn't be applied yet are simply not provided. And when they
are provided, the mixer doesn't have to ignore them, meaning the actual
deferring of a context doesn't have to synchrnously force an update -- the
process call will send any pending updates, which the mixer will apply even if
another deferral occurs before the mixer runs, because it'll still be there
waiting on the next mixer invocation.
There is one slight bug introduced by this commit. When a listener change is
made, or changes to multiple sources while updates are being deferred, it is
possible for the mixer to run while the sources are prepping their updates,
causing some of the source updates to be seen before the other. This will be
fixed in short order.
This mixes to a 4-channel first-order ambisonics buffer. With ACN ordering and
N3D scaling, this makes it easy to remain compatible with effects that only
care about mono input since channel 0 is an unattenuated mono signal.