Add NEON-enhanced resamplers

This commit is contained in:
Chris Robinson 2017-02-12 21:03:30 -08:00
parent 427f484e01
commit 27695e2b24
3 changed files with 294 additions and 4 deletions

View File

@ -113,6 +113,10 @@ static inline ResamplerFunc SelectResampler(enum Resampler resampler)
case PointResampler:
return Resample_point32_C;
case LinearResampler:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_lerp32_Neon;
#endif
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_lerp32_SSE41;
@ -123,6 +127,10 @@ static inline ResamplerFunc SelectResampler(enum Resampler resampler)
#endif
return Resample_lerp32_C;
case FIR4Resampler:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_fir4_32_Neon;
#endif
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_fir4_32_SSE41;
@ -133,6 +141,10 @@ static inline ResamplerFunc SelectResampler(enum Resampler resampler)
#endif
return Resample_fir4_32_C;
case FIR8Resampler:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_fir8_32_Neon;
#endif
#ifdef HAVE_SSE4_1
if((CPUCapFlags&CPU_CAP_SSE4_1))
return Resample_fir8_32_SSE41;
@ -143,6 +155,10 @@ static inline ResamplerFunc SelectResampler(enum Resampler resampler)
#endif
return Resample_fir8_32_C;
case BSincResampler:
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Resample_bsinc32_Neon;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Resample_bsinc32_SSE;

View File

@ -67,10 +67,6 @@ inline void InitiatePositionArrays(ALuint frac, ALint increment, ALuint *restric
}
}
const ALfloat *Resample_bsinc32_SSE(const BsincState *state, const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei dstlen);
const ALfloat *Resample_lerp32_SSE2(const BsincState *state, const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples);
@ -92,6 +88,10 @@ const ALfloat *Resample_fir8_32_SSE41(const BsincState *state, const ALfloat *re
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples);
const ALfloat *Resample_bsinc32_SSE(const BsincState *state, const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei dstlen);
/* Neon mixers */
void MixHrtf_Neon(ALfloat *restrict LeftOut, ALfloat *restrict RightOut,
const ALfloat *data, ALsizei Counter, ALsizei Offset, ALsizei OutPos,
@ -108,4 +108,18 @@ void MixRow_Neon(ALfloat *OutBuffer, const ALfloat *Gains,
const ALfloat (*restrict data)[BUFFERSIZE], ALsizei InChans,
ALsizei InPos, ALsizei BufferSize);
/* Neon resamplers */
const ALfloat *Resample_lerp32_Neon(const BsincState *state, const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples);
const ALfloat *Resample_fir4_32_Neon(const BsincState *state, const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples);
const ALfloat *Resample_fir8_32_Neon(const BsincState *state, const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples);
const ALfloat *Resample_bsinc32_Neon(const BsincState *state, const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei dstlen);
#endif /* MIXER_DEFS_H */

View File

@ -7,6 +7,266 @@
#include "alMain.h"
#include "alu.h"
#include "hrtf.h"
#include "mixer_defs.h"
#ifdef __GNUC__
#define ASSUME_ALIGNED(ptr, ...) __builtin_assume_aligned((ptr), __VA_ARGS__)
#else
#define ASSUME_ALIGNED(ptr, ...) (ptr)
#endif
const ALfloat *Resample_lerp32_Neon(const BsincState* UNUSED(state), const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples)
{
const int32x4_t increment4 = vdupq_n_s32(increment*4);
const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE);
const uint32x4_t fracMask4 = vdupq_n_u32(FRACTIONMASK);
alignas(16) ALint pos_[4];
alignas(16) ALuint frac_[4];
int32x4_t pos4;
uint32x4_t frac4;
ALsizei i;
InitiatePositionArrays(frac, increment, frac_, pos_, 4);
frac4 = vld1q_u32(frac_);
pos4 = vld1q_s32(pos_);
for(i = 0;numsamples-i > 3;i += 4)
{
const float32x4_t val1 = (float32x4_t){src[pos_[0]], src[pos_[1]], src[pos_[2]], src[pos_[3]]};
const float32x4_t val2 = (float32x4_t){src[pos_[0]+1], src[pos_[1]+1], src[pos_[2]+1], src[pos_[3]+1]};
/* val1 + (val2-val1)*mu */
const float32x4_t r0 = vsubq_f32(val2, val1);
const float32x4_t mu = vmulq_f32(vcvtq_f32_u32(frac4), fracOne4);
const float32x4_t out = vmlaq_f32(val1, mu, r0);
vst1q_f32(&dst[i], out);
frac4 = vaddq_u32(frac4, (uint32x4_t)increment4);
pos4 = vaddq_s32(pos4, (int32x4_t)vshrq_n_u32(frac4, FRACTIONBITS));
frac4 = vandq_u32(frac4, fracMask4);
vst1q_s32(pos_, pos4);
}
if(i < numsamples)
{
/* NOTE: These four elements represent the position *after* the last
* four samples, so the lowest element is the next position to
* resample.
*/
ALint pos = pos_[0];
frac = vgetq_lane_u32(frac4, 0);
do {
dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
} while(++i < numsamples);
}
return dst;
}
const ALfloat *Resample_fir4_32_Neon(const BsincState* UNUSED(state), const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples)
{
const int32x4_t increment4 = vdupq_n_s32(increment*4);
const uint32x4_t fracMask4 = vdupq_n_u32(FRACTIONMASK);
alignas(16) ALint pos_[4];
alignas(16) ALuint frac_[4];
int32x4_t pos4;
uint32x4_t frac4;
ALsizei i;
InitiatePositionArrays(frac, increment, frac_, pos_, 4);
frac4 = vld1q_u32(frac_);
pos4 = vld1q_s32(pos_);
--src;
for(i = 0;numsamples-i > 3;i += 4)
{
const float32x4_t val0 = vld1q_f32(&src[pos_[0]]);
const float32x4_t val1 = vld1q_f32(&src[pos_[1]]);
const float32x4_t val2 = vld1q_f32(&src[pos_[2]]);
const float32x4_t val3 = vld1q_f32(&src[pos_[3]]);
float32x4_t k0 = vld1q_f32(ResampleCoeffs.FIR4[frac_[0]]);
float32x4_t k1 = vld1q_f32(ResampleCoeffs.FIR4[frac_[1]]);
float32x4_t k2 = vld1q_f32(ResampleCoeffs.FIR4[frac_[2]]);
float32x4_t k3 = vld1q_f32(ResampleCoeffs.FIR4[frac_[3]]);
float32x4_t out;
k0 = vmulq_f32(k0, val0);
k1 = vmulq_f32(k1, val1);
k2 = vmulq_f32(k2, val2);
k3 = vmulq_f32(k3, val3);
k0 = vcombine_f32(vpadd_f32(vget_low_f32(k0), vget_high_f32(k0)),
vpadd_f32(vget_low_f32(k1), vget_high_f32(k1)));
k2 = vcombine_f32(vpadd_f32(vget_low_f32(k2), vget_high_f32(k2)),
vpadd_f32(vget_low_f32(k3), vget_high_f32(k3)));
out = vcombine_f32(vpadd_f32(vget_low_f32(k0), vget_high_f32(k0)),
vpadd_f32(vget_low_f32(k2), vget_high_f32(k2)));
vst1q_f32(&dst[i], out);
frac4 = vaddq_u32(frac4, (uint32x4_t)increment4);
pos4 = vaddq_s32(pos4, (int32x4_t)vshrq_n_u32(frac4, FRACTIONBITS));
frac4 = vandq_u32(frac4, fracMask4);
vst1q_s32(pos_, pos4);
vst1q_u32(frac_, frac4);
}
if(i < numsamples)
{
/* NOTE: These four elements represent the position *after* the last
* four samples, so the lowest element is the next position to
* resample.
*/
ALint pos = pos_[0];
frac = frac_[0];
do {
dst[i] = resample_fir4(src[pos], src[pos+1], src[pos+2], src[pos+3], frac);
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
} while(++i < numsamples);
}
return dst;
}
const ALfloat *Resample_fir8_32_Neon(const BsincState* UNUSED(state), const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei numsamples)
{
const int32x4_t increment4 = vdupq_n_s32(increment*4);
const uint32x4_t fracMask4 = vdupq_n_u32(FRACTIONMASK);
alignas(16) ALint pos_[4];
alignas(16) ALuint frac_[4];
int32x4_t pos4;
uint32x4_t frac4;
ALsizei i, j;
InitiatePositionArrays(frac, increment, frac_, pos_, 4);
frac4 = vld1q_u32(frac_);
pos4 = vld1q_s32(pos_);
src -= 3;
for(i = 0;numsamples-i > 3;i += 4)
{
float32x4_t out[2];
for(j = 0;j < 8;j+=4)
{
const float32x4_t val0 = vld1q_f32(&src[pos_[0]+j]);
const float32x4_t val1 = vld1q_f32(&src[pos_[1]+j]);
const float32x4_t val2 = vld1q_f32(&src[pos_[2]+j]);
const float32x4_t val3 = vld1q_f32(&src[pos_[3]+j]);
float32x4_t k0 = vld1q_f32(&ResampleCoeffs.FIR4[frac_[0]][j]);
float32x4_t k1 = vld1q_f32(&ResampleCoeffs.FIR4[frac_[1]][j]);
float32x4_t k2 = vld1q_f32(&ResampleCoeffs.FIR4[frac_[2]][j]);
float32x4_t k3 = vld1q_f32(&ResampleCoeffs.FIR4[frac_[3]][j]);
k0 = vmulq_f32(k0, val0);
k1 = vmulq_f32(k1, val1);
k2 = vmulq_f32(k2, val2);
k3 = vmulq_f32(k3, val3);
k0 = vcombine_f32(vpadd_f32(vget_low_f32(k0), vget_high_f32(k0)),
vpadd_f32(vget_low_f32(k1), vget_high_f32(k1)));
k2 = vcombine_f32(vpadd_f32(vget_low_f32(k2), vget_high_f32(k2)),
vpadd_f32(vget_low_f32(k3), vget_high_f32(k3)));
out[j>>2] = vcombine_f32(vpadd_f32(vget_low_f32(k0), vget_high_f32(k0)),
vpadd_f32(vget_low_f32(k2), vget_high_f32(k2)));
}
out[0] = vaddq_f32(out[0], out[1]);
vst1q_f32(&dst[i], out[0]);
frac4 = vaddq_u32(frac4, (uint32x4_t)increment4);
pos4 = vaddq_s32(pos4, (int32x4_t)vshrq_n_u32(frac4, FRACTIONBITS));
frac4 = vandq_u32(frac4, fracMask4);
vst1q_s32(pos_, pos4);
vst1q_u32(frac_, frac4);
}
if(i < numsamples)
{
/* NOTE: These four elements represent the position *after* the last
* four samples, so the lowest element is the next position to
* resample.
*/
ALint pos = pos_[0];
frac = frac_[0];
do {
dst[i] = resample_fir8(src[pos ], src[pos+1], src[pos+2], src[pos+3],
src[pos+4], src[pos+5], src[pos+6], src[pos+7], frac);
frac += increment;
pos += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
} while(++i < numsamples);
}
return dst;
}
const ALfloat *Resample_bsinc32_Neon(const BsincState *state, const ALfloat *restrict src,
ALuint frac, ALint increment, ALfloat *restrict dst,
ALsizei dstlen)
{
const float32x4_t sf4 = vdupq_n_f32(state->sf);
const ALsizei m = state->m;
const ALfloat *fil, *scd, *phd, *spd;
ALsizei pi, i, j;
float32x4_t r4;
ALfloat pf;
src += state->l;
for(i = 0;i < dstlen;i++)
{
// Calculate the phase index and factor.
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
pi = frac >> FRAC_PHASE_BITDIFF;
pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
#undef FRAC_PHASE_BITDIFF
fil = ASSUME_ALIGNED(state->coeffs[pi].filter, 16);
scd = ASSUME_ALIGNED(state->coeffs[pi].scDelta, 16);
phd = ASSUME_ALIGNED(state->coeffs[pi].phDelta, 16);
spd = ASSUME_ALIGNED(state->coeffs[pi].spDelta, 16);
// Apply the scale and phase interpolated filter.
r4 = vdupq_n_f32(0.0f);
{
const float32x4_t pf4 = vdupq_n_f32(pf);
for(j = 0;j < m;j+=4)
{
float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j]));
f4 = vmlaq_f32(f4,
pf4, vmlaq_f32(vld1q_f32(&phd[j]),
sf4, vld1q_f32(&spd[j])
)
);
r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
}
}
r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)),
vrev64_f32(vget_low_f32(r4))));
dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
frac += increment;
src += frac>>FRACTIONBITS;
frac &= FRACTIONMASK;
}
return dst;
}
static inline void ApplyCoeffsStep(ALsizei Offset, ALfloat (*restrict Values)[2],