openal-soft/alc/voice.cpp

926 lines
34 KiB
C++
Raw Normal View History

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "voice.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <new>
#include <utility>
#include "AL/al.h"
#include "AL/alc.h"
#include "al/buffer.h"
#include "al/event.h"
#include "al/source.h"
#include "alcmain.h"
#include "albyte.h"
#include "alconfig.h"
#include "alcontext.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "alspan.h"
#include "alstring.h"
#include "alu.h"
#include "cpu_caps.h"
2019-08-05 18:36:39 -07:00
#include "devformat.h"
#include "filters/biquad.h"
#include "filters/nfc.h"
#include "filters/splitter.h"
#include "hrtf.h"
#include "inprogext.h"
#include "logging.h"
#include "mixer/defs.h"
#include "opthelpers.h"
#include "ringbuffer.h"
#include "threads.h"
#include "vector.h"
2019-05-26 19:41:11 -07:00
struct CTag;
#ifdef HAVE_SSE
struct SSETag;
#endif
#ifdef HAVE_NEON
struct NEONTag;
#endif
struct CopyTag;
2020-03-23 11:35:08 -07:00
static_assert((BUFFERSIZE-1)/MAX_PITCH > 0, "MAX_PITCH is too large for BUFFERSIZE!");
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
2020-03-23 11:35:08 -07:00
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
2019-09-22 21:19:19 -07:00
Resampler ResamplerDefault{Resampler::Linear};
2017-04-20 23:21:46 -07:00
MixerFunc MixSamples{Mix_<CTag>};
namespace {
2020-04-08 06:17:04 -07:00
using HrtfMixerFunc = void(*)(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
2020-01-05 17:12:48 -08:00
const MixHrtfFilter *hrtfparams, const size_t BufferSize);
2020-04-08 06:17:04 -07:00
using HrtfMixerBlendFunc = void(*)(const float *InSamples, float2 *AccumSamples,
2020-01-05 17:12:48 -08:00
const ALuint IrSize, const HrtfFilter *oldparams, const MixHrtfFilter *newparams,
const size_t BufferSize);
HrtfMixerFunc MixHrtfSamples{MixHrtf_<CTag>};
HrtfMixerBlendFunc MixHrtfBlendSamples{MixHrtfBlend_<CTag>};
inline MixerFunc SelectMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return Mix_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return Mix_<SSETag>;
#endif
return Mix_<CTag>;
}
inline HrtfMixerFunc SelectHrtfMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtf_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtf_<SSETag>;
#endif
return MixHrtf_<CTag>;
}
inline HrtfMixerBlendFunc SelectHrtfBlendMixer()
{
#ifdef HAVE_NEON
if((CPUCapFlags&CPU_CAP_NEON))
return MixHrtfBlend_<NEONTag>;
#endif
#ifdef HAVE_SSE
if((CPUCapFlags&CPU_CAP_SSE))
return MixHrtfBlend_<SSETag>;
#endif
return MixHrtfBlend_<CTag>;
}
} // namespace
void aluInitMixer()
2015-09-27 20:55:39 -07:00
{
2019-06-30 16:15:15 -07:00
if(auto resopt = ConfigValueStr(nullptr, nullptr, "resampler"))
{
struct ResamplerEntry {
const char name[16];
const Resampler resampler;
};
constexpr ResamplerEntry ResamplerList[]{
2019-09-22 21:19:19 -07:00
{ "none", Resampler::Point },
{ "point", Resampler::Point },
{ "cubic", Resampler::Cubic },
{ "bsinc12", Resampler::BSinc12 },
{ "fast_bsinc12", Resampler::FastBSinc12 },
2019-09-22 21:19:19 -07:00
{ "bsinc24", Resampler::BSinc24 },
{ "fast_bsinc24", Resampler::FastBSinc24 },
};
2019-06-30 16:15:15 -07:00
const char *str{resopt->c_str()};
if(al::strcasecmp(str, "bsinc") == 0)
{
WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str);
str = "bsinc12";
}
else if(al::strcasecmp(str, "sinc4") == 0 || al::strcasecmp(str, "sinc8") == 0)
{
WARN("Resampler option \"%s\" is deprecated, using cubic\n", str);
str = "cubic";
}
auto iter = std::find_if(std::begin(ResamplerList), std::end(ResamplerList),
[str](const ResamplerEntry &entry) -> bool
{ return al::strcasecmp(str, entry.name) == 0; });
if(iter == std::end(ResamplerList))
ERR("Invalid resampler: %s\n", str);
else
ResamplerDefault = iter->resampler;
}
MixSamples = SelectMixer();
MixHrtfBlendSamples = SelectHrtfBlendMixer();
2015-09-27 20:55:39 -07:00
MixHrtfSamples = SelectHrtfMixer();
}
namespace {
/* A quick'n'dirty lookup table to decode a muLaw-encoded byte sample into a
* signed 16-bit sample */
2020-04-23 04:57:04 -07:00
constexpr int16_t muLawDecompressionTable[256] = {
-32124,-31100,-30076,-29052,-28028,-27004,-25980,-24956,
-23932,-22908,-21884,-20860,-19836,-18812,-17788,-16764,
-15996,-15484,-14972,-14460,-13948,-13436,-12924,-12412,
-11900,-11388,-10876,-10364, -9852, -9340, -8828, -8316,
-7932, -7676, -7420, -7164, -6908, -6652, -6396, -6140,
-5884, -5628, -5372, -5116, -4860, -4604, -4348, -4092,
-3900, -3772, -3644, -3516, -3388, -3260, -3132, -3004,
-2876, -2748, -2620, -2492, -2364, -2236, -2108, -1980,
-1884, -1820, -1756, -1692, -1628, -1564, -1500, -1436,
-1372, -1308, -1244, -1180, -1116, -1052, -988, -924,
-876, -844, -812, -780, -748, -716, -684, -652,
-620, -588, -556, -524, -492, -460, -428, -396,
-372, -356, -340, -324, -308, -292, -276, -260,
-244, -228, -212, -196, -180, -164, -148, -132,
-120, -112, -104, -96, -88, -80, -72, -64,
-56, -48, -40, -32, -24, -16, -8, 0,
32124, 31100, 30076, 29052, 28028, 27004, 25980, 24956,
23932, 22908, 21884, 20860, 19836, 18812, 17788, 16764,
15996, 15484, 14972, 14460, 13948, 13436, 12924, 12412,
11900, 11388, 10876, 10364, 9852, 9340, 8828, 8316,
7932, 7676, 7420, 7164, 6908, 6652, 6396, 6140,
5884, 5628, 5372, 5116, 4860, 4604, 4348, 4092,
3900, 3772, 3644, 3516, 3388, 3260, 3132, 3004,
2876, 2748, 2620, 2492, 2364, 2236, 2108, 1980,
1884, 1820, 1756, 1692, 1628, 1564, 1500, 1436,
1372, 1308, 1244, 1180, 1116, 1052, 988, 924,
876, 844, 812, 780, 748, 716, 684, 652,
620, 588, 556, 524, 492, 460, 428, 396,
372, 356, 340, 324, 308, 292, 276, 260,
244, 228, 212, 196, 180, 164, 148, 132,
120, 112, 104, 96, 88, 80, 72, 64,
56, 48, 40, 32, 24, 16, 8, 0
};
/* A quick'n'dirty lookup table to decode an aLaw-encoded byte sample into a
* signed 16-bit sample */
2020-04-23 04:57:04 -07:00
constexpr int16_t aLawDecompressionTable[256] = {
-5504, -5248, -6016, -5760, -4480, -4224, -4992, -4736,
-7552, -7296, -8064, -7808, -6528, -6272, -7040, -6784,
-2752, -2624, -3008, -2880, -2240, -2112, -2496, -2368,
-3776, -3648, -4032, -3904, -3264, -3136, -3520, -3392,
-22016,-20992,-24064,-23040,-17920,-16896,-19968,-18944,
-30208,-29184,-32256,-31232,-26112,-25088,-28160,-27136,
-11008,-10496,-12032,-11520, -8960, -8448, -9984, -9472,
-15104,-14592,-16128,-15616,-13056,-12544,-14080,-13568,
-344, -328, -376, -360, -280, -264, -312, -296,
-472, -456, -504, -488, -408, -392, -440, -424,
-88, -72, -120, -104, -24, -8, -56, -40,
-216, -200, -248, -232, -152, -136, -184, -168,
-1376, -1312, -1504, -1440, -1120, -1056, -1248, -1184,
-1888, -1824, -2016, -1952, -1632, -1568, -1760, -1696,
-688, -656, -752, -720, -560, -528, -624, -592,
-944, -912, -1008, -976, -816, -784, -880, -848,
5504, 5248, 6016, 5760, 4480, 4224, 4992, 4736,
7552, 7296, 8064, 7808, 6528, 6272, 7040, 6784,
2752, 2624, 3008, 2880, 2240, 2112, 2496, 2368,
3776, 3648, 4032, 3904, 3264, 3136, 3520, 3392,
22016, 20992, 24064, 23040, 17920, 16896, 19968, 18944,
30208, 29184, 32256, 31232, 26112, 25088, 28160, 27136,
11008, 10496, 12032, 11520, 8960, 8448, 9984, 9472,
15104, 14592, 16128, 15616, 13056, 12544, 14080, 13568,
344, 328, 376, 360, 280, 264, 312, 296,
472, 456, 504, 488, 408, 392, 440, 424,
88, 72, 120, 104, 24, 8, 56, 40,
216, 200, 248, 232, 152, 136, 184, 168,
1376, 1312, 1504, 1440, 1120, 1056, 1248, 1184,
1888, 1824, 2016, 1952, 1632, 1568, 1760, 1696,
688, 656, 752, 720, 560, 528, 624, 592,
944, 912, 1008, 976, 816, 784, 880, 848
};
template<FmtType T>
struct FmtTypeTraits { };
template<>
struct FmtTypeTraits<FmtUByte> {
2020-04-23 04:57:04 -07:00
using Type = uint8_t;
static constexpr inline float to_float(const Type val) noexcept
2019-09-24 21:49:12 -07:00
{ return val*(1.0f/128.0f) - 1.0f; }
};
template<>
struct FmtTypeTraits<FmtShort> {
2020-04-23 04:57:04 -07:00
using Type = int16_t;
static constexpr inline float to_float(const Type val) noexcept { return val*(1.0f/32768.0f); }
};
template<>
struct FmtTypeTraits<FmtFloat> {
2020-04-23 04:57:04 -07:00
using Type = float;
static constexpr inline float to_float(const Type val) noexcept { return val; }
};
template<>
struct FmtTypeTraits<FmtDouble> {
2020-04-23 04:57:04 -07:00
using Type = double;
static constexpr inline float to_float(const Type val) noexcept
2020-04-08 06:17:04 -07:00
{ return static_cast<float>(val); }
};
template<>
struct FmtTypeTraits<FmtMulaw> {
2020-04-23 04:57:04 -07:00
using Type = uint8_t;
static constexpr inline float to_float(const Type val) noexcept
{ return muLawDecompressionTable[val] * (1.0f/32768.0f); }
};
template<>
struct FmtTypeTraits<FmtAlaw> {
2020-04-23 04:57:04 -07:00
using Type = uint8_t;
static constexpr inline float to_float(const Type val) noexcept
{ return aLawDecompressionTable[val] * (1.0f/32768.0f); }
};
void SendSourceStoppedEvent(ALCcontext *context, ALuint id)
{
2019-07-30 09:05:54 -07:00
RingBuffer *ring{context->mAsyncEvents.get()};
auto evt_vec = ring->getWriteVector();
if(evt_vec.first.len < 1) return;
AsyncEvent *evt{::new(evt_vec.first.buf) AsyncEvent{EventType_SourceStateChange}};
evt->u.srcstate.id = id;
evt->u.srcstate.state = AL_STOPPED;
ring->writeAdvance(1);
}
const float *DoFilters(BiquadFilter &lpfilter, BiquadFilter &hpfilter, float *dst,
const al::span<const float> src, int type)
{
switch(type)
{
case AF_None:
lpfilter.clear();
hpfilter.clear();
break;
case AF_LowPass:
lpfilter.process(src, dst);
hpfilter.clear();
return dst;
case AF_HighPass:
lpfilter.clear();
hpfilter.process(src, dst);
return dst;
case AF_BandPass:
DualBiquad{lpfilter, hpfilter}.process(src, dst);
return dst;
}
return src.data();
}
template<FmtType T>
2020-04-08 06:17:04 -07:00
inline void LoadSampleArray(float *RESTRICT dst, const al::byte *src, const size_t srcstep,
const size_t samples) noexcept
{
using SampleType = typename FmtTypeTraits<T>::Type;
2019-05-24 06:12:20 -07:00
const SampleType *RESTRICT ssrc{reinterpret_cast<const SampleType*>(src)};
2019-08-18 15:37:39 -07:00
for(size_t i{0u};i < samples;i++)
dst[i] = FmtTypeTraits<T>::to_float(ssrc[i*srcstep]);
}
2020-04-08 06:17:04 -07:00
void LoadSamples(float *RESTRICT dst, const al::byte *src, const size_t srcstep, FmtType srctype,
const size_t samples) noexcept
{
#define HANDLE_FMT(T) case T: LoadSampleArray<T>(dst, src, srcstep, samples); break
switch(srctype)
{
HANDLE_FMT(FmtUByte);
HANDLE_FMT(FmtShort);
HANDLE_FMT(FmtFloat);
HANDLE_FMT(FmtDouble);
HANDLE_FMT(FmtMulaw);
HANDLE_FMT(FmtAlaw);
}
#undef HANDLE_FMT
}
2020-04-08 06:17:04 -07:00
float *LoadBufferStatic(ALbufferlistitem *BufferListItem, ALbufferlistitem *&BufferLoopItem,
const size_t NumChannels, const size_t SampleSize, const size_t chan, size_t DataPosInt,
2020-04-08 06:17:04 -07:00
al::span<float> SrcBuffer)
{
const ALbuffer *Buffer{BufferListItem->mBuffer};
const ALuint LoopStart{Buffer->LoopStart};
const ALuint LoopEnd{Buffer->LoopEnd};
ASSUME(LoopEnd > LoopStart);
/* If current pos is beyond the loop range, do not loop */
if(!BufferLoopItem || DataPosInt >= LoopEnd)
{
BufferLoopItem = nullptr;
/* Load what's left to play from the buffer */
2019-09-14 18:27:57 -07:00
const size_t DataRem{minz(SrcBuffer.size(), Buffer->SampleLen-DataPosInt)};
const al::byte *Data{Buffer->mData.data()};
Data += (DataPosInt*NumChannels + chan)*SampleSize;
2019-09-14 18:27:57 -07:00
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataRem);
SrcBuffer = SrcBuffer.subspan(DataRem);
}
else
{
/* Load what's left of this loop iteration */
2019-09-14 18:27:57 -07:00
const size_t DataRem{minz(SrcBuffer.size(), LoopEnd-DataPosInt)};
const al::byte *Data{Buffer->mData.data()};
Data += (DataPosInt*NumChannels + chan)*SampleSize;
2019-09-14 18:27:57 -07:00
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataRem);
SrcBuffer = SrcBuffer.subspan(DataRem);
/* Load any repeats of the loop we can to fill the buffer. */
const auto LoopSize = static_cast<size_t>(LoopEnd - LoopStart);
while(!SrcBuffer.empty())
{
const size_t DataSize{minz(SrcBuffer.size(), LoopSize)};
2019-09-14 18:27:57 -07:00
Data = Buffer->mData.data() + (LoopStart*NumChannels + chan)*SampleSize;
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataSize);
SrcBuffer = SrcBuffer.subspan(DataSize);
}
}
return SrcBuffer.begin();
}
2020-04-08 06:17:04 -07:00
float *LoadBufferCallback(ALbufferlistitem *BufferListItem, const size_t NumChannels,
const size_t SampleSize, const size_t chan, size_t NumCallbackSamples,
2020-04-08 06:17:04 -07:00
al::span<float> SrcBuffer)
{
const ALbuffer *Buffer{BufferListItem->mBuffer};
/* Load what's left to play from the buffer */
const size_t DataRem{minz(SrcBuffer.size(), NumCallbackSamples)};
const al::byte *Data{Buffer->mData.data() + chan*SampleSize};
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataRem);
SrcBuffer = SrcBuffer.subspan(DataRem);
return SrcBuffer.begin();
}
2020-04-08 06:17:04 -07:00
float *LoadBufferQueue(ALbufferlistitem *BufferListItem, ALbufferlistitem *BufferLoopItem,
const size_t NumChannels, const size_t SampleSize, const size_t chan, size_t DataPosInt,
2020-04-08 06:17:04 -07:00
al::span<float> SrcBuffer)
{
/* Crawl the buffer queue to fill in the temp buffer */
while(BufferListItem && !SrcBuffer.empty())
{
ALbuffer *Buffer{BufferListItem->mBuffer};
if(!(Buffer && DataPosInt < Buffer->SampleLen))
{
if(Buffer) DataPosInt -= Buffer->SampleLen;
BufferListItem = BufferListItem->mNext.load(std::memory_order_acquire);
if(!BufferListItem) BufferListItem = BufferLoopItem;
continue;
}
2019-08-18 15:37:39 -07:00
const size_t DataSize{minz(SrcBuffer.size(), Buffer->SampleLen-DataPosInt)};
const al::byte *Data{Buffer->mData.data()};
Data += (DataPosInt*NumChannels + chan)*SampleSize;
LoadSamples(SrcBuffer.data(), Data, NumChannels, Buffer->mFmtType, DataSize);
SrcBuffer = SrcBuffer.subspan(DataSize);
if(SrcBuffer.empty()) break;
DataPosInt = 0;
BufferListItem = BufferListItem->mNext.load(std::memory_order_acquire);
if(!BufferListItem) BufferListItem = BufferLoopItem;
}
return SrcBuffer.begin();
}
2019-12-24 23:36:08 -08:00
void DoHrtfMix(const float *samples, const ALuint DstBufferSize, DirectParams &parms,
const float TargetGain, const ALuint Counter, ALuint OutPos, const ALuint IrSize,
ALCdevice *Device)
{
auto &HrtfSamples = Device->HrtfSourceData;
auto &AccumSamples = Device->HrtfAccumData;
/* Copy the HRTF history and new input samples into a temp buffer. */
2020-01-13 19:45:13 -08:00
auto src_iter = std::copy(parms.Hrtf.History.begin(), parms.Hrtf.History.end(),
std::begin(HrtfSamples));
std::copy_n(samples, DstBufferSize, src_iter);
/* Copy the last used samples back into the history buffer for later. */
2020-01-13 19:45:13 -08:00
std::copy_n(std::begin(HrtfSamples) + DstBufferSize, parms.Hrtf.History.size(),
parms.Hrtf.History.begin());
/* If fading, the old gain is not silence, and this is the first mixing
* pass, fade between the IRs.
*/
ALuint fademix{0u};
if(Counter && parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD && OutPos == 0)
{
fademix = minu(DstBufferSize, 128);
float gain{TargetGain};
/* The new coefficients need to fade in completely since they're
* replacing the old ones. To keep the gain fading consistent,
* interpolate between the old and new target gains given how much of
* the fade time this mix handles.
*/
if LIKELY(Counter > fademix)
{
2020-04-08 06:17:04 -07:00
const float a{static_cast<float>(fademix) / static_cast<float>(Counter)};
gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a);
}
MixHrtfFilter hrtfparams;
hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs;
hrtfparams.Delay = parms.Hrtf.Target.Delay;
hrtfparams.Gain = 0.0f;
hrtfparams.GainStep = gain / static_cast<float>(fademix);
MixHrtfBlendSamples(HrtfSamples, AccumSamples+OutPos, IrSize, &parms.Hrtf.Old, &hrtfparams,
fademix);
/* Update the old parameters with the result. */
parms.Hrtf.Old = parms.Hrtf.Target;
2020-01-05 17:12:48 -08:00
parms.Hrtf.Old.Gain = gain;
OutPos += fademix;
}
if LIKELY(fademix < DstBufferSize)
{
const ALuint todo{DstBufferSize - fademix};
float gain{TargetGain};
/* Interpolate the target gain if the gain fading lasts longer than
* this mix.
*/
if(Counter > DstBufferSize)
{
const float a{static_cast<float>(todo) / static_cast<float>(Counter-fademix)};
gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a);
}
MixHrtfFilter hrtfparams;
hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs;
hrtfparams.Delay = parms.Hrtf.Target.Delay;
hrtfparams.Gain = parms.Hrtf.Old.Gain;
hrtfparams.GainStep = (gain - parms.Hrtf.Old.Gain) / static_cast<float>(todo);
MixHrtfSamples(HrtfSamples+fademix, AccumSamples+OutPos, IrSize, &hrtfparams, todo);
2020-01-05 17:12:48 -08:00
/* Store the now-current gain for next time. */
parms.Hrtf.Old.Gain = gain;
}
}
void DoNfcMix(const al::span<const float> samples, FloatBufferLine *OutBuffer, DirectParams &parms,
const float *TargetGains, const ALuint Counter, const ALuint OutPos, ALCdevice *Device)
{
using FilterProc = void (NfcFilter::*)(const al::span<const float>, float*);
static constexpr FilterProc NfcProcess[MAX_AMBI_ORDER+1]{
nullptr, &NfcFilter::process1, &NfcFilter::process2, &NfcFilter::process3};
float *CurrentGains{parms.Gains.Current.data()};
MixSamples(samples, {OutBuffer, 1u}, CurrentGains, TargetGains, Counter, OutPos);
++OutBuffer;
++CurrentGains;
++TargetGains;
2019-12-24 23:36:08 -08:00
const al::span<float> nfcsamples{Device->NfcSampleData, samples.size()};
size_t order{1};
while(const size_t chancount{Device->NumChannelsPerOrder[order]})
{
(parms.NFCtrlFilter.*NfcProcess[order])(samples, nfcsamples.data());
MixSamples(nfcsamples, {OutBuffer, chancount}, CurrentGains, TargetGains, Counter, OutPos);
OutBuffer += chancount;
CurrentGains += chancount;
TargetGains += chancount;
if(++order == MAX_AMBI_ORDER+1)
break;
}
}
} // namespace
void Voice::mix(const State vstate, ALCcontext *Context, const ALuint SamplesToDo)
{
static constexpr std::array<float,MAX_OUTPUT_CHANNELS> SilentTarget{};
2018-11-25 13:19:01 -08:00
ASSUME(SamplesToDo > 0);
/* Get voice info */
2019-08-31 14:53:28 -07:00
ALuint DataPosInt{mPosition.load(std::memory_order_relaxed)};
ALuint DataPosFrac{mPositionFrac.load(std::memory_order_relaxed)};
2019-08-31 14:53:28 -07:00
ALbufferlistitem *BufferListItem{mCurrentBuffer.load(std::memory_order_relaxed)};
ALbufferlistitem *BufferLoopItem{mLoopBuffer.load(std::memory_order_relaxed)};
const ALuint SampleSize{mSampleSize};
const ALuint increment{mStep};
if UNLIKELY(increment < 1)
{
/* If the voice is supposed to be stopping but can't be mixed, just
* stop it before bailing.
*/
if(vstate == Stopping)
mPlayState.store(Stopped, std::memory_order_release);
return;
}
2018-11-25 13:19:01 -08:00
ASSUME(SampleSize > 0);
const size_t FrameSize{mChans.size() * SampleSize};
ASSUME(FrameSize > 0);
2018-11-25 13:19:01 -08:00
ALCdevice *Device{Context->mDevice.get()};
2019-09-13 04:15:05 -07:00
const ALuint NumSends{Device->NumAuxSends};
2019-09-13 09:38:35 -07:00
const ALuint IrSize{Device->mHrtf ? Device->mHrtf->irSize : 0};
2018-11-25 13:19:01 -08:00
ResamplerFunc Resample{(increment == FRACTIONONE && DataPosFrac == 0) ?
2019-08-31 14:53:28 -07:00
Resample_<CopyTag,CTag> : mResampler};
2018-11-25 13:19:01 -08:00
2019-08-31 14:53:28 -07:00
ALuint Counter{(mFlags&VOICE_IS_FADING) ? SamplesToDo : 0};
if(!Counter)
{
/* No fading, just overwrite the old/current params. */
for(auto &chandata : mChans)
{
2019-09-14 18:27:57 -07:00
{
DirectParams &parms = chandata.mDryParams;
if(!(mFlags&VOICE_HAS_HRTF))
parms.Gains.Current = parms.Gains.Target;
2019-09-14 18:27:57 -07:00
else
parms.Hrtf.Old = parms.Hrtf.Target;
}
2019-09-13 04:15:05 -07:00
for(ALuint send{0};send < NumSends;++send)
{
2019-08-31 14:53:28 -07:00
if(mSend[send].Buffer.empty())
continue;
2019-06-24 13:21:06 -07:00
SendParams &parms = chandata.mWetParams[send];
parms.Gains.Current = parms.Gains.Target;
}
}
}
2019-08-31 14:53:28 -07:00
else if((mFlags&VOICE_HAS_HRTF))
{
for(auto &chandata : mChans)
{
DirectParams &parms = chandata.mDryParams;
if(!(parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD))
{
/* The old HRTF params are silent, so overwrite the old
* coefficients with the new, and reset the old gain to 0. The
* future mix will then fade from silence.
*/
parms.Hrtf.Old = parms.Hrtf.Target;
parms.Hrtf.Old.Gain = 0.0f;
}
}
}
ALuint buffers_done{0u};
ALuint OutPos{0u};
do {
2013-10-26 08:49:37 -07:00
/* Figure out how many buffer samples will be needed */
ALuint DstBufferSize{SamplesToDo - OutPos};
/* Calculate the last written dst sample pos. */
uint64_t DataSize64{DstBufferSize - 1};
/* Calculate the last read src sample pos. */
DataSize64 = (DataSize64*increment + DataPosFrac) >> FRACTIONBITS;
/* +1 to get the src sample count, include padding. */
DataSize64 += 1 + MAX_RESAMPLER_PADDING;
2019-05-26 19:41:11 -07:00
auto SrcBufferSize = static_cast<ALuint>(
minu64(DataSize64, BUFFERSIZE + MAX_RESAMPLER_PADDING + 1));
if(SrcBufferSize > BUFFERSIZE + MAX_RESAMPLER_PADDING)
{
SrcBufferSize = BUFFERSIZE + MAX_RESAMPLER_PADDING;
/* If the source buffer got saturated, we can't fill the desired
* dst size. Figure out how many samples we can actually mix from
* this.
*/
DataSize64 = SrcBufferSize - MAX_RESAMPLER_PADDING;
DataSize64 = ((DataSize64<<FRACTIONBITS) - DataPosFrac + increment-1) / increment;
2020-03-23 11:35:08 -07:00
if(DataSize64 < DstBufferSize)
{
/* Some mixers require being 16-byte aligned, so also limit to
* a multiple of 4 samples to maintain alignment.
*/
DstBufferSize = static_cast<ALuint>(DataSize64) & ~3u;
}
}
if((mFlags&(VOICE_IS_CALLBACK|VOICE_CALLBACK_STOPPED)) == VOICE_IS_CALLBACK
&& BufferListItem)
{
ALbuffer *buffer{BufferListItem->mBuffer};
/* Exclude resampler pre-padding from the needed size. */
const ALuint toLoad{SrcBufferSize - (MAX_RESAMPLER_PADDING>>1)};
if(toLoad > mNumCallbackSamples)
{
const size_t byteOffset{mNumCallbackSamples*FrameSize};
const size_t needBytes{toLoad*FrameSize - byteOffset};
const ALsizei gotBytes{buffer->Callback(buffer->UserData,
&buffer->mData[byteOffset], static_cast<ALsizei>(needBytes))};
if(gotBytes < 1)
mFlags |= VOICE_CALLBACK_STOPPED;
else if(static_cast<ALuint>(gotBytes) < needBytes)
{
mFlags |= VOICE_CALLBACK_STOPPED;
mNumCallbackSamples += static_cast<ALuint>(static_cast<ALuint>(gotBytes) /
FrameSize);
}
else
mNumCallbackSamples = toLoad;
}
}
2019-08-03 13:05:42 -07:00
ASSUME(DstBufferSize > 0);
for(auto &chandata : mChans)
{
const size_t num_chans{mChans.size()};
const auto chan = static_cast<size_t>(std::distance(mChans.data(),
std::addressof(chandata)));
const al::span<float> SrcData{Device->SourceData, SrcBufferSize};
/* Load the previous samples into the source data first, then load
* what we can from the buffer queue.
*/
auto srciter = std::copy_n(chandata.mPrevSamples.begin(), MAX_RESAMPLER_PADDING>>1,
SrcData.begin());
if UNLIKELY(!BufferListItem)
srciter = std::copy(chandata.mPrevSamples.begin()+(MAX_RESAMPLER_PADDING>>1),
chandata.mPrevSamples.end(), srciter);
else if((mFlags&VOICE_IS_STATIC))
srciter = LoadBufferStatic(BufferListItem, BufferLoopItem, num_chans,
SampleSize, chan, DataPosInt, {srciter, SrcData.end()});
else if((mFlags&VOICE_IS_CALLBACK))
srciter = LoadBufferCallback(BufferListItem, num_chans, SampleSize, chan,
mNumCallbackSamples, {srciter, SrcData.end()});
else
srciter = LoadBufferQueue(BufferListItem, BufferLoopItem, num_chans,
SampleSize, chan, DataPosInt, {srciter, SrcData.end()});
if UNLIKELY(srciter != SrcData.end())
{
/* If the source buffer wasn't filled, copy the last sample for
* the remaining buffer. Ideally it should have ended with
* silence, but if not the gain fading should help avoid clicks
* from sudden amplitude changes.
*/
2020-04-08 06:17:04 -07:00
const float sample{*(srciter-1)};
2019-05-26 19:41:11 -07:00
std::fill(srciter, SrcData.end(), sample);
}
/* Store the last source samples used for next time. */
2018-11-24 19:16:21 -08:00
std::copy_n(&SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS],
chandata.mPrevSamples.size(), chandata.mPrevSamples.begin());
/* Resample, then apply ambisonic upsampling as needed. */
2020-04-08 06:17:04 -07:00
const float *ResampledData{Resample(&mResampleState,
&SrcData[MAX_RESAMPLER_PADDING>>1], DataPosFrac, increment,
{Device->ResampledData, DstBufferSize})};
2019-08-31 14:53:28 -07:00
if((mFlags&VOICE_IS_AMBISONIC))
{
2019-12-25 21:48:58 -08:00
const float hfscale{chandata.mAmbiScale};
/* Beware the evil const_cast. It's safe since it's pointing to
2019-05-26 19:41:11 -07:00
* either SourceData or ResampledData (both non-const), but the
* resample method takes the source as const float* and may
* return it without copying to output, making it currently
* unavoidable.
*/
2019-12-25 21:48:58 -08:00
const al::span<float> samples{const_cast<float*>(ResampledData), DstBufferSize};
chandata.mAmbiSplitter.applyHfScale(samples, hfscale);
}
/* Now filter and mix to the appropriate outputs. */
2020-04-08 06:17:04 -07:00
float (&FilterBuf)[BUFFERSIZE] = Device->FilteredData;
{
DirectParams &parms = chandata.mDryParams;
const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf,
{ResampledData, DstBufferSize}, mDirect.FilterType)};
2019-08-31 14:53:28 -07:00
if((mFlags&VOICE_HAS_HRTF))
{
2020-04-08 06:17:04 -07:00
const float TargetGain{UNLIKELY(vstate == Stopping) ? 0.0f :
parms.Hrtf.Target.Gain};
2019-12-24 23:36:08 -08:00
DoHrtfMix(samples, DstBufferSize, parms, TargetGain, Counter, OutPos, IrSize,
Device);
}
2019-08-31 14:53:28 -07:00
else if((mFlags&VOICE_HAS_NFC))
2019-03-10 12:50:38 -07:00
{
const float *TargetGains{UNLIKELY(vstate == Stopping) ? SilentTarget.data()
: parms.Gains.Target.data()};
DoNfcMix({samples, DstBufferSize}, mDirect.Buffer.data(), parms, TargetGains,
Counter, OutPos, Device);
2019-03-10 12:50:38 -07:00
}
else
{
const float *TargetGains{UNLIKELY(vstate == Stopping) ? SilentTarget.data()
: parms.Gains.Target.data()};
MixSamples({samples, DstBufferSize}, mDirect.Buffer,
parms.Gains.Current.data(), TargetGains, Counter, OutPos);
2019-03-10 12:50:38 -07:00
}
}
2019-09-13 04:15:05 -07:00
for(ALuint send{0};send < NumSends;++send)
{
2019-08-31 14:53:28 -07:00
if(mSend[send].Buffer.empty())
continue;
SendParams &parms = chandata.mWetParams[send];
const float *samples{DoFilters(parms.LowPass, parms.HighPass, FilterBuf,
{ResampledData, DstBufferSize}, mSend[send].FilterType)};
const float *TargetGains{UNLIKELY(vstate == Stopping) ? SilentTarget.data()
: parms.Gains.Target.data()};
MixSamples({samples, DstBufferSize}, mSend[send].Buffer,
parms.Gains.Current.data(), TargetGains, Counter, OutPos);
2019-09-03 21:23:54 -07:00
}
}
/* Update positions */
DataPosFrac += increment*DstBufferSize;
const ALuint SrcSamplesDone{DataPosFrac>>FRACTIONBITS};
DataPosInt += SrcSamplesDone;
DataPosFrac &= FRACTIONMASK;
OutPos += DstBufferSize;
Counter = maxu(DstBufferSize, Counter) - DstBufferSize;
if UNLIKELY(!BufferListItem)
{
/* Do nothing extra when there's no buffers. */
}
else if((mFlags&VOICE_IS_STATIC))
{
if(BufferLoopItem)
{
/* Handle looping static source */
const ALbuffer *Buffer{BufferListItem->mBuffer};
const ALuint LoopStart{Buffer->LoopStart};
const ALuint LoopEnd{Buffer->LoopEnd};
if(DataPosInt >= LoopEnd)
{
assert(LoopEnd > LoopStart);
DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
}
}
else
{
/* Handle non-looping static source */
if(DataPosInt >= BufferListItem->mSampleLen)
{
2019-01-07 12:37:13 +01:00
BufferListItem = nullptr;
break;
}
2011-02-06 01:07:37 -08:00
}
}
else if((mFlags&VOICE_IS_CALLBACK))
2020-02-17 04:50:00 -08:00
{
ALbuffer *buffer{BufferListItem->mBuffer};
if(SrcSamplesDone < mNumCallbackSamples)
{
const size_t byteOffset{SrcSamplesDone*FrameSize};
const size_t byteEnd{mNumCallbackSamples*FrameSize};
std::copy(buffer->mData.data()+byteOffset, buffer->mData.data()+byteEnd,
buffer->mData.data());
mNumCallbackSamples -= SrcSamplesDone;
}
else
{
BufferListItem = nullptr;
mNumCallbackSamples = 0;
}
2020-02-17 04:50:00 -08:00
}
else
{
/* Handle streaming source */
do {
if(BufferListItem->mSampleLen > DataPosInt)
break;
2011-02-06 01:07:37 -08:00
DataPosInt -= BufferListItem->mSampleLen;
++buffers_done;
BufferListItem = BufferListItem->mNext.load(std::memory_order_relaxed);
if(!BufferListItem) BufferListItem = BufferLoopItem;
} while(BufferListItem);
}
} while(OutPos < SamplesToDo);
2019-08-31 14:53:28 -07:00
mFlags |= VOICE_IS_FADING;
/* Don't update positions and buffers if we were stopping. */
if UNLIKELY(vstate == Stopping)
{
mPlayState.store(Stopped, std::memory_order_release);
return;
}
2019-08-31 14:53:28 -07:00
/* Capture the source ID in case it's reset for stopping. */
const ALuint SourceID{mSourceID.load(std::memory_order_relaxed)};
/* Update voice info */
2019-08-31 14:53:28 -07:00
mPosition.store(DataPosInt, std::memory_order_relaxed);
mPositionFrac.store(DataPosFrac, std::memory_order_relaxed);
mCurrentBuffer.store(BufferListItem, std::memory_order_relaxed);
if(!BufferListItem)
{
2019-08-31 14:53:28 -07:00
mLoopBuffer.store(nullptr, std::memory_order_relaxed);
mSourceID.store(0u, std::memory_order_relaxed);
}
std::atomic_thread_fence(std::memory_order_release);
/* Send any events now, after the position/buffer info was updated. */
2019-08-31 14:53:28 -07:00
const ALbitfieldSOFT enabledevt{Context->mEnabledEvts.load(std::memory_order_acquire)};
if(buffers_done > 0 && (enabledevt&EventType_BufferCompleted))
{
2019-07-30 09:05:54 -07:00
RingBuffer *ring{Context->mAsyncEvents.get()};
auto evt_vec = ring->getWriteVector();
if(evt_vec.first.len > 0)
{
AsyncEvent *evt{::new(evt_vec.first.buf) AsyncEvent{EventType_BufferCompleted}};
evt->u.bufcomp.id = SourceID;
evt->u.bufcomp.count = buffers_done;
ring->writeAdvance(1);
}
}
if(!BufferListItem)
{
/* If the voice just ended, set it to Stopping so the next render
* ensures any residual noise fades to 0 amplitude.
*/
mPlayState.store(Stopping, std::memory_order_release);
2019-08-31 14:53:28 -07:00
if((enabledevt&EventType_SourceStateChange))
SendSourceStoppedEvent(Context, SourceID);
}
}