The new audio subsystem fixes two issues:
- First Primary issue it fixes is the ability for parent sources to
intercept the audio of child sources, and do custom processing on
them. The main reason for this was the ability to do custom
cross-fading in transitions, but it's also useful for things such as
side-chain effects, applying audio effects to entire scenes, applying
scene-specific audio filters on sub-sources, and other such
possibilities.
- The secondary issue that needed fixing was audio buffering.
Previously, audio buffering was always a fixed buffer size, so it
would always have exactly a certain number of milliseconds of audio
buffering (and thus output delay). Instead, it now dynamically
increases audio buffering only as necessary, minimizing output delay,
and removing the need for users to have to worry about an audio
buffering setting.
The new design makes it so that audio from the leaves of the scene graph
flow to the root nodes, and can be intercepted by parent sources. Each
audio source handles its own buffering, and each audio tick a specific
number of audio frames are popped from the front of the circular buffer
on each audio source. Composite sources (such as scenes) can access the
audio for child sources and do custom processing or mixing on that
audio. Composite sources use the audio_render callback of sources to do
synchronous or deferred audio processing per audio tick. Things like
scenes now mix audio from their sub-sources.
(Note: This commit breaks libobs compilation. Skip if bisecting)
Adds a "composite" source type which is used for sources that composite
one or more sub-sources. The audio_render callback is called for
composite sources to allow those types of sources to do custom
processing of the audio of its sub-sources.
(Note: This commit breaks libobs compilation. Skip if bisecting)
Removes audio lines and stores the circular buffer for the audio on the
source itself.
(Note: This commit breaks libobs compilation. Skip if bisecting)
The mixers that a source was assigned to were originally stored in the
audio line. This will store it in the sources themselves instead.
Ensures that the packet dts_usec vals which are generated for
syncing/interleaving use the proper offset relative to where they're
supposed to be starting from. The negative DTS of a first video packet
could potentially have been applied twice due to this.
This was originally used for calculating audio volume if transitions
were active, but transitions won't work that way so tracking the active
transitions is no longer needed.
(Note: This commit breaks UI compilation. Skip if bisecting)
API Removed:
------------------------
obs_add_source
API Changed:
------------------------
obs_source_remove: Now just marks/signals a source for removal
The concept of "user sources" is flawed: it was something that the
front-end was forced to deal with if it wanted to automate source
saving/loading, and often it had to code around it. That's not how
saving/loading should work, a front-end should be allowed to manage
lists of sources in the way it explicitly chooses, and it should be able
to choose which sources it wants to save/load.
This prevents encoders (hardware encoders in particular) from being
continually active when all outputs disconnect from an encoder. This is
mostly just a temporary measure; the encoding interface may need a bit
of a redesign. It will also definitely needs to be able to flush at
some point. Currently when an output is stopped, the pending data is
discarded, which needs to be fixed.
Allows objects to be created regardless of whether the actual id exists
or not. This is a precaution that preserves objects/settings if for
some reason the id was removed for whatever reason (plugin removed, or
hardware encoder that disappeared). This was already added for sources,
but really needs to be added for other libobs objects as well: outputs,
encoders, services.
This feature allows a user to delay an output (as long as the output
itself supports it). Needless to say this intended for live streams,
where users may want to delay their streams to prevent stream sniping,
cheating, and other such things.
The design this time was a bit more elaborate, but still simple in
design: the user can now schedule stops/starts without having to wait
for the stream itself to stop before being able to take any action.
Optionally, they can also forcibly stop stream (and delay) in case
something happens which they might not want to be streamed.
Additionally, a new option was added to preserve stream cutoff point on
disconnections/reconnections, so that if you get disconnected while
streaming, when it reconnects, it will reconnect right at the point
where it left off. This will probably be quite useful for a number of
applications in addition to regular delay, such as setting the delay to
1 second and then using this feature to minimize, for example, a
critical stream such as a tournament stream from getting any of its
stream data cut off. However, using this feature will of course cause
the stream data to buffer and increase delay (and memory usage) while
it's in the process of reconnecting.
API Changed:
---------------------------
From:
- bool obs_startup(const char *locale, profiler_name_store_t *store);
To:
- bool obs_startup(const char *locale, const char *module_config_path,
profiler_name_store_t *store);
Summary:
---------------------------
This allows plugin modules to store plugin-specific configuration data
(rather than only allowing objects to store configuration data). This
will be useful for things like caching data, for example looking up and
storing ingests from remote (rather than storing locally), or caching
font data (so it doesn't have to build a font cache each time), among
other things.
Also adds a module-specific directory for the UI
Due to all the threads in libobs it wouldn't be safe to make that
parameter reconfigurable after libobs is initialized without adding
even more synchronization. On the other hand, adding a function to set
the name store before calling obs_startup would solve the problem of
passing a name store into libobs, but it can lead to more complicated
semantics for obs_get_profiler_name_store (e.g., should it always return
the current name store even if libobs isn't initialized until someone
calls set_name_store(NULL)? should obs_shutdown call
set_name_store(NULL)? Passing it as obs_startup parameter avoids
these (and hopefully other) potential misunderstandings
(Non-compiling commit: windowless-context branch)
API Changed:
---------------------
Removed functions:
- obs_add_draw_callback
- obs_remove_draw_callback
- obs_resize
- obs_preview_set_enabled
- obs_preview_enabled
Removed member variables from struct obs_video_info:
- window_width
- window_height
- window
Summary:
---------------------
Changes the core libobs API to not be dependent upon a main window/view.
If you wish to draw to a window/view, use an obs_display object to
handle it.
This allows the use of libobs without requiring a window to be present
on the system. This is also prunes code that had to be needlessly
duplicated to handle the "main" window.
The "clamped" video time is the system time per video frame that is
closest to the current system time, but always divisible by the frame
interval. For example, if the last frame system timestamp was 1600 and
the new frame is 2500, but the frame interval is 800, then the
"clamped" video time is 2400.
This clamped value is useful to get the relative system time without any
jitter.
Implements exponential backoff for consecutive reconnects, which is
useful to prevent too many connections from trying to reconnect back to
a service at once over a short period of time in the case of potential
service downtime. Exponential backoff causes each subsequent reconnect
attempt to double its timeout duration.
Allows the ability to hint at encoders what format should be used.
This is particularly useful if libobs is currently operating in planar
4:4:4, but you want to force an encoder used for streaming to convert to
NV12 to prevent streaming issues.
The obs_source::async_reset_texture variable can cause a data race
between threads to occur because it could be set to true in one thread
then changed back to false in another thread. This could cause the
async texture to not update its size when it's supposed to, which can
cause a crash or corruption when copying data from a frame of a
differing size.
The solution to this is to:
- Delete the async_reset_texture variable, and make the
set_async_texture_size function change the texture size if the
async_width, async_height, or async_format variables differ from the
frame's width/height/format. Those variables are then only ever set
in the libobs graphics thread.
- Make the cache_video function use separate variables from other
functions to detect a change in size (due to the fact that the texture
size should only be resized in the libobs graphics thread). These
variables are async_cache_width, async_cache_height, and
async_cache_format, which are only be set in the thread that calls
obs_source_output_video.
How to replicate the data race:
- On OSX, use window capture on a textedit window, then continually
resize the textedit window.
This fixes an issue where cache frames would not free at all after
having been allocated with no upper limit on the cached frame size. If
cached frames go unused for a specific period of time, they are
deallocated and removed from the cache.
This is preferable to having an upper cache limit due to the potential
for async delay filtering.
Async frames are only swapping when rendering, or when not visible.
This is a flawed design due to the fact that there are certain
circumstances where the source is neither visible nor currently
rendering.
This is what caused a memory leak when scene items were marked as
invisible, because if a source has an async child source and decides not
to render that source for whatever reason, the child source would not
process the async frames at all, and the cache would just grow.
To fix this, simply moving the async frame cycle to tick fixes the issue
due to the fact that tick is always called regardless of circumstance.
obs_source_process_filter tried to do everything in a single function,
but the problem is that effect parameters would not properly be
accounted for due to the way it internally draws, therefore it was
necessary to split the functions in to two, you first call
obs_source_process_filter_begin, then you set your effect parameters,
then you finally call obs_source_process_filter_end. This ensures that
when the filter is drawn, that the effect parameters are set.
For the show/hide and activate/deactivate callbacks, schedule these
callbacks to only be called from within the video thread rather than in
a separate thread. This ensures that any potential graphics activity
that occurs within them is kept in the same thread.
API changed:
--------------------------
void obs_output_set_audio_encoder(
obs_output_t *output,
obs_encoder_t *encoder);
obs_encoder_t *obs_output_get_audio_encoder(
const obs_output_t *output);
obs_encoder_t *obs_audio_encoder_create(
const char *id,
const char *name,
obs_data_t *settings);
Changed to:
--------------------------
/* 'idx' specifies the track index of the output */
void obs_output_set_audio_encoder(
obs_output_t *output,
obs_encoder_t *encoder,
size_t idx);
/* 'idx' specifies the track index of the output */
obs_encoder_t *obs_output_get_audio_encoder(
const obs_output_t *output,
size_t idx);
/* 'mixer_idx' specifies the mixer index to capture audio from */
obs_encoder_t *obs_audio_encoder_create(
const char *id,
const char *name,
obs_data_t *settings,
size_t mixer_idx);
Overview
--------------------------
This feature allows multiple audio mixers to be used at a time. This
capability was able to be added with surprisingly very little extra
overhead. Audio will not be mixed unless it's assigned to a specific
mixer, and mixers will not mix unless they have an active mix
connection.
Mostly this will be useful for being able to separate out specific audio
for recording versus streaming, but will also be useful for certain
streaming services that support multiple audio streams via RTMP.
I didn't want to use a variable amount of mixers due to the desire to
reduce heap allocations, so currently I set the limit to 4 simultaneous
mixers; this number can be increased later if needed, but honestly I
feel like it's just the right number to use.
Sources:
Sources can now specify which audio mixers their audio is mixed to; this
can be a single mixer or multiple mixers at a time. The
obs_source_set_audio_mixers function sets the audio mixer which an audio
source applies to. For example, 0xF would mean that the source applies
to all four mixers.
Audio Encoders:
Audio encoders now must specify which specific audio mixer they use when
they encode audio data.
Outputs:
Outputs that use encoders can now support multiple audio tracks at once
if they have the OBS_OUTPUT_MULTI_TRACK capability flag set. This is
mostly only useful for certain types of RTMP transmissions, though may
be useful for file formats that support multiple audio tracks as well
later on.