zstd/lib/compress/zstdmt_compress.c

523 lines
21 KiB
C

#include <stdlib.h> /* malloc */
#include <string.h> /* memcpy */
#include <pool.h> /* threadpool */
#include "threading.h" /* mutex */
#include "zstd_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
#include "zstdmt_compress.h"
#if 0
# include <stdio.h>
# include <unistd.h>
# include <sys/times.h>
static unsigned g_debugLevel = 2;
# define DEBUGLOG(l, ...) if (l<=g_debugLevel) { fprintf(stderr, __VA_ARGS__); fprintf(stderr, " \n"); }
static unsigned long long GetCurrentClockTimeMicroseconds()
{
static clock_t _ticksPerSecond = 0;
if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
struct tms junk; clock_t newTicks = (clock_t) times(&junk);
return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
}
#define MUTEX_WAIT_TIME_DLEVEL 5
#define PTHREAD_MUTEX_LOCK(mutex) \
if (g_debugLevel>=MUTEX_WAIT_TIME_DLEVEL) { \
unsigned long long beforeTime = GetCurrentClockTimeMicroseconds(); \
pthread_mutex_lock(mutex); \
unsigned long long afterTime = GetCurrentClockTimeMicroseconds(); \
unsigned long long elapsedTime = (afterTime-beforeTime); \
if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \
DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
elapsedTime, #mutex); \
} \
} else pthread_mutex_lock(mutex);
#else
# define DEBUGLOG(l, ...) {} /* disabled */
# define PTHREAD_MUTEX_LOCK(m) pthread_mutex_lock(m)
#endif
#define ZSTDMT_NBTHREADS_MAX 128
/* ===== Buffer Pool ===== */
typedef struct buffer_s {
void* start;
size_t size;
} buffer_t;
typedef struct ZSTDMT_bufferPool_s {
unsigned totalBuffers;;
unsigned nbBuffers;
buffer_t bTable[1]; /* variable size */
} ZSTDMT_bufferPool;
static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbThreads)
{
unsigned const maxNbBuffers = 2*nbThreads + 2;
ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)calloc(1, sizeof(ZSTDMT_bufferPool) + maxNbBuffers * sizeof(buffer_t));
if (bufPool==NULL) return NULL;
bufPool->totalBuffers = maxNbBuffers;
return bufPool;
}
static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
{
unsigned u;
if (!bufPool) return; /* compatibility with free on NULL */
for (u=0; u<bufPool->totalBuffers; u++)
free(bufPool->bTable[u].start);
free(bufPool);
}
/* assumption : invocation from main thread only ! */
static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* pool, size_t bSize)
{
if (pool->nbBuffers) { /* try to use an existing buffer */
buffer_t const buf = pool->bTable[--(pool->nbBuffers)];
size_t const availBufferSize = buf.size;
if ((availBufferSize >= bSize) & (availBufferSize <= 10*bSize)) /* large enough, but not too much */
return buf;
free(buf.start); /* size conditions not respected : scratch this buffer and create a new one */
}
/* create new buffer */
{ void* const start = malloc(bSize);
if (start==NULL) bSize = 0;
return (buffer_t) { start, bSize }; /* note : start can be NULL if malloc fails ! */
}
}
/* store buffer for later re-use, up to pool capacity */
static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* pool, buffer_t buf)
{
if (buf.start == NULL) return; /* release on NULL */
if (pool->nbBuffers < pool->totalBuffers) {
pool->bTable[pool->nbBuffers++] = buf; /* store for later re-use */
return;
}
/* Reached bufferPool capacity (should not happen) */
free(buf.start);
}
/* ===== CCtx Pool ===== */
typedef struct {
unsigned totalCCtx;
unsigned availCCtx;
ZSTD_CCtx* cctx[1]; /* variable size */
} ZSTDMT_CCtxPool;
/* assumption : CCtxPool invocation only from main thread */
/* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
{
unsigned u;
for (u=0; u<pool->availCCtx; u++) /* note : availCCtx is supposed == totalCCtx; otherwise, some CCtx are still in use */
ZSTD_freeCCtx(pool->cctx[u]);
free(pool);
}
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(unsigned nbThreads)
{
ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) calloc(1, sizeof(ZSTDMT_CCtxPool) + nbThreads*sizeof(ZSTD_CCtx*));
if (!cctxPool) return NULL;
{ unsigned threadNb;
for (threadNb=0; threadNb<nbThreads; threadNb++) {
cctxPool->cctx[threadNb] = ZSTD_createCCtx();
if (cctxPool->cctx[threadNb]==NULL) { /* failed cctx allocation : abort cctxPool creation */
cctxPool->totalCCtx = cctxPool->availCCtx = threadNb;
ZSTDMT_freeCCtxPool(cctxPool);
return NULL;
} } }
cctxPool->totalCCtx = cctxPool->availCCtx = nbThreads;
return cctxPool;
}
static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* pool)
{
if (pool->availCCtx) {
pool->availCCtx--;
return pool->cctx[pool->availCCtx];
}
/* note : should not be possible, since totalCCtx==nbThreads */
return ZSTD_createCCtx(); /* note : can be NULL is creation fails ! */
}
static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
{
if (cctx==NULL) return; /* release on NULL */
if (pool->availCCtx < pool->totalCCtx)
pool->cctx[pool->availCCtx++] = cctx;
else
/* note : should not be possible, since totalCCtx==nbThreads */
ZSTD_freeCCtx(cctx);
}
/* ===== Thread worker ===== */
typedef struct {
buffer_t buffer;
size_t filled;
} inBuff_t;
typedef struct {
ZSTD_CCtx* cctx;
buffer_t src;
const void* srcStart;
size_t srcSize;
buffer_t dstBuff;
size_t cSize;
size_t dstFlushed;
unsigned long long fullFrameSize;
unsigned firstChunk;
unsigned lastChunk;
unsigned jobCompleted;
pthread_mutex_t* jobCompleted_mutex;
pthread_cond_t* jobCompleted_cond;
ZSTD_parameters params;
} ZSTDMT_jobDescription;
/* ZSTDMT_compressChunk() : POOL_function type */
void ZSTDMT_compressChunk(void* jobDescription)
{
ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
buffer_t dstBuff = job->dstBuff;
size_t hSize = ZSTD_compressBegin_advanced(job->cctx, NULL, 0, job->params, job->fullFrameSize);
if (ZSTD_isError(hSize)) { job->cSize = hSize; goto _endJob; }
hSize = ZSTD_compressContinue(job->cctx, dstBuff.start, dstBuff.size, job->srcStart, 0); /* flush frame header */
if (ZSTD_isError(hSize)) { job->cSize = hSize; goto _endJob; }
if (job->firstChunk) { /* preserve frame header when it is first chunk */
dstBuff.start = (char*)dstBuff.start + hSize;
dstBuff.size -= hSize;
} else /* otherwise, overwrite */
hSize = 0;
job->cSize = (job->lastChunk) ? /* last chunk signal */
ZSTD_compressEnd(job->cctx, dstBuff.start, dstBuff.size, job->srcStart, job->srcSize) :
ZSTD_compressContinue(job->cctx, dstBuff.start, dstBuff.size, job->srcStart, job->srcSize);
if (!ZSTD_isError(job->cSize)) job->cSize += hSize;
DEBUGLOG(5, "chunk %u : compressed %u bytes into %u bytes ", (unsigned)job->lastChunk, (unsigned)job->srcSize, (unsigned)job->cSize);
_endJob:
PTHREAD_MUTEX_LOCK(job->jobCompleted_mutex);
job->jobCompleted = 1;
pthread_cond_signal(job->jobCompleted_cond);
pthread_mutex_unlock(job->jobCompleted_mutex);
}
/* ------------------------------------------ */
/* ===== Multi-threaded compression ===== */
/* ------------------------------------------ */
struct ZSTDMT_CCtx_s {
POOL_ctx* factory;
ZSTDMT_bufferPool* buffPool;
ZSTDMT_CCtxPool* cctxPool;
pthread_mutex_t jobCompleted_mutex;
pthread_cond_t jobCompleted_cond;
size_t targetSectionSize;
size_t inBuffSize;
inBuff_t inBuff;
ZSTD_parameters params;
unsigned nbThreads;
unsigned jobIDMask;
unsigned doneJobID;
unsigned nextJobID;
unsigned frameEnded;
ZSTDMT_jobDescription jobs[1]; /* variable size (must lies at the end) */
};
ZSTDMT_CCtx *ZSTDMT_createCCtx(unsigned nbThreads)
{
ZSTDMT_CCtx* cctx;
U32 const minNbJobs = nbThreads + 1;
U32 const nbJobsLog2 = ZSTD_highbit32(minNbJobs) + 1;
U32 const nbJobs = 1 << nbJobsLog2;
DEBUGLOG(4, "nbThreads : %u ; minNbJobs : %u ; nbJobsLog2 : %u ; nbJobs : %u \n",
nbThreads, minNbJobs, nbJobsLog2, nbJobs);
if ((nbThreads < 1) | (nbThreads > ZSTDMT_NBTHREADS_MAX)) return NULL;
cctx = (ZSTDMT_CCtx*) calloc(1, sizeof(ZSTDMT_CCtx) + nbJobs*sizeof(ZSTDMT_jobDescription));
if (!cctx) return NULL;
cctx->nbThreads = nbThreads;
cctx->jobIDMask = nbJobs - 1;
cctx->factory = POOL_create(nbThreads, 1);
cctx->buffPool = ZSTDMT_createBufferPool(nbThreads);
cctx->cctxPool = ZSTDMT_createCCtxPool(nbThreads);
if (!cctx->factory | !cctx->buffPool | !cctx->cctxPool) { /* one object was not created */
ZSTDMT_freeCCtx(cctx);
return NULL;
}
pthread_mutex_init(&cctx->jobCompleted_mutex, NULL); /* Todo : check init function return */
pthread_cond_init(&cctx->jobCompleted_cond, NULL);
return cctx;
}
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
{
POOL_free(mtctx->factory);
ZSTDMT_freeBufferPool(mtctx->buffPool);
ZSTDMT_freeCCtxPool(mtctx->cctxPool);
pthread_mutex_destroy(&mtctx->jobCompleted_mutex);
pthread_cond_destroy(&mtctx->jobCompleted_cond);
free(mtctx);
return 0;
}
size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel)
{
ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0);
size_t const chunkTargetSize = (size_t)1 << (params.cParams.windowLog + 2);
unsigned const nbChunksMax = (unsigned)(srcSize / chunkTargetSize) + (srcSize < chunkTargetSize) /* min 1 */;
unsigned nbChunks = MIN(nbChunksMax, mtctx->nbThreads);
size_t const proposedChunkSize = (srcSize + (nbChunks-1)) / nbChunks;
size_t const avgChunkSize = ((proposedChunkSize & 0x1FFFF) < 0xFFFF) ? proposedChunkSize + 0xFFFF : proposedChunkSize; /* avoid too small last block */
size_t remainingSrcSize = srcSize;
const char* const srcStart = (const char*)src;
size_t frameStartPos = 0;
DEBUGLOG(3, "windowLog : %2u => chunkTargetSize : %u bytes ", params.cParams.windowLog, (U32)chunkTargetSize);
DEBUGLOG(2, "nbChunks : %2u (chunkSize : %u bytes) ", nbChunks, (U32)avgChunkSize);
params.fParams.contentSizeFlag = 1;
{ unsigned u;
for (u=0; u<nbChunks; u++) {
size_t const chunkSize = MIN(remainingSrcSize, avgChunkSize);
size_t const dstBufferCapacity = u ? ZSTD_compressBound(chunkSize) : dstCapacity;
buffer_t const dstBuffer = u ? ZSTDMT_getBuffer(mtctx->buffPool, dstBufferCapacity) : (buffer_t){ dst, dstCapacity };
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(mtctx->cctxPool);
if ((cctx==NULL) || (dstBuffer.start==NULL)) {
mtctx->jobs[u].cSize = ERROR(memory_allocation); /* job result */
mtctx->jobs[u].jobCompleted = 1;
nbChunks = u+1;
break; /* let's wait for previous jobs to complete, but don't start new ones */
}
mtctx->jobs[u].srcStart = srcStart + frameStartPos;
mtctx->jobs[u].srcSize = chunkSize;
mtctx->jobs[u].fullFrameSize = srcSize;
mtctx->jobs[u].params = params;
mtctx->jobs[u].dstBuff = dstBuffer;
mtctx->jobs[u].cctx = cctx;
mtctx->jobs[u].firstChunk = (u==0);
mtctx->jobs[u].lastChunk = (u==nbChunks-1);
mtctx->jobs[u].jobCompleted = 0;
mtctx->jobs[u].jobCompleted_mutex = &mtctx->jobCompleted_mutex;
mtctx->jobs[u].jobCompleted_cond = &mtctx->jobCompleted_cond;
DEBUGLOG(3, "posting job %u (%u bytes)", u, (U32)chunkSize);
POOL_add(mtctx->factory, ZSTDMT_compressChunk, &mtctx->jobs[u]);
frameStartPos += chunkSize;
remainingSrcSize -= chunkSize;
} }
/* note : since nbChunks <= nbThreads, all jobs should be running immediately in parallel */
{ unsigned chunkID;
size_t error = 0, dstPos = 0;
for (chunkID=0; chunkID<nbChunks; chunkID++) {
DEBUGLOG(3, "ready to write chunk %u ", chunkID);
PTHREAD_MUTEX_LOCK(&mtctx->jobCompleted_mutex);
while (mtctx->jobs[chunkID].jobCompleted==0) {
DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", chunkID);
pthread_cond_wait(&mtctx->jobCompleted_cond, &mtctx->jobCompleted_mutex);
}
pthread_mutex_unlock(&mtctx->jobCompleted_mutex);
ZSTDMT_releaseCCtx(mtctx->cctxPool, mtctx->jobs[chunkID].cctx);
{ size_t const cSize = mtctx->jobs[chunkID].cSize;
if (ZSTD_isError(cSize)) error = cSize;
if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall);
if (chunkID) { /* note : chunk 0 is already written directly into dst */
if (!error) memcpy((char*)dst + dstPos, mtctx->jobs[chunkID].dstBuff.start, cSize);
ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[chunkID].dstBuff);
}
dstPos += cSize ;
}
}
if (!error) DEBUGLOG(3, "compressed size : %u ", (U32)dstPos);
return error ? error : dstPos;
}
}
/* ====================================== */
/* ======= Streaming API ======= */
/* ====================================== */
#if 1
size_t ZSTDMT_initCStream(ZSTDMT_CCtx* zcs, int compressionLevel) {
zcs->params = ZSTD_getParams(compressionLevel, 0, 0);
zcs->targetSectionSize = (size_t)1 << (zcs->params.cParams.windowLog + 2);
zcs->inBuffSize = 5 * (1 << zcs->params.cParams.windowLog);
zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize); /* check for NULL ! */
zcs->inBuff.filled = 0;
zcs->doneJobID = 0;
zcs->nextJobID = 0;
zcs->frameEnded = 0;
return 0;
}
size_t ZSTDMT_compressStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
if (zcs->frameEnded) return ERROR(stage_wrong);
/* fill input buffer */
{ size_t const toLoad = MIN(input->size - input->pos, zcs->inBuffSize - zcs->inBuff.filled);
memcpy((char*)zcs->inBuff.buffer.start + zcs->inBuff.filled, input->src, toLoad);
input->pos += toLoad;
}
if (zcs->inBuff.filled == zcs->inBuffSize) { /* filled enough : let's compress */
size_t const dstBufferCapacity = ZSTD_compressBound(zcs->targetSectionSize);
buffer_t const dstBuffer = ZSTDMT_getBuffer(zcs->buffPool, dstBufferCapacity);
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(zcs->cctxPool);
unsigned const jobID = zcs->nextJobID & zcs->jobIDMask;
if ((cctx==NULL) || (dstBuffer.start==NULL)) {
zcs->jobs[jobID].cSize = ERROR(memory_allocation); /* job result : how to collect that error ? */
zcs->jobs[jobID].jobCompleted = 1;
}
zcs->jobs[jobID].src = zcs->inBuff.buffer;
zcs->jobs[jobID].srcStart = zcs->inBuff.buffer.start;
zcs->jobs[jobID].srcSize = zcs->targetSectionSize;
zcs->jobs[jobID].fullFrameSize = 0;
zcs->jobs[jobID].params = zcs->params;
zcs->jobs[jobID].dstBuff = dstBuffer;
zcs->jobs[jobID].cctx = cctx;
zcs->jobs[jobID].firstChunk = (jobID==0);
zcs->jobs[jobID].lastChunk = 0;
zcs->jobs[jobID].jobCompleted = 0;
zcs->jobs[jobID].dstFlushed = 0;
zcs->jobs[jobID].jobCompleted_mutex = &zcs->jobCompleted_mutex;
zcs->jobs[jobID].jobCompleted_cond = &zcs->jobCompleted_cond;
/* get a new buffer for next input - save remaining into it */
zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize); /* check for NULL ! */
zcs->inBuff.filled = (U32)(zcs->inBuffSize - zcs->targetSectionSize);
memcpy(zcs->inBuff.buffer.start, (const char*)zcs->jobs[jobID].srcStart + zcs->targetSectionSize, zcs->inBuff.filled);
DEBUGLOG(3, "posting job %u (%u bytes)", zcs->nextJobID, (U32)zcs->jobs[jobID].srcSize);
POOL_add(zcs->factory, ZSTDMT_compressChunk, &zcs->jobs[jobID]);
zcs->nextJobID++;
}
/* check if there is any data available to flush */
{ unsigned const jobID = zcs->doneJobID & zcs->jobIDMask;
ZSTDMT_jobDescription job = zcs->jobs[jobID];
if (job.jobCompleted) { /* job completed : output can be flushed */
size_t const toWrite = MIN(job.cSize - job.dstFlushed, output->size - output->pos);
ZSTDMT_releaseCCtx(zcs->cctxPool, job.cctx); zcs->jobs[jobID].cctx = NULL; /* release cctx for future task */
ZSTDMT_releaseBuffer(zcs->buffPool, job.src); zcs->jobs[jobID].srcStart = NULL; zcs->jobs[jobID].src = (buffer_t) { NULL, 0 };
memcpy((char*)output->dst + output->pos, (const char*)job.dstBuff.start + job.dstFlushed, toWrite);
output->pos += toWrite;
job.dstFlushed += toWrite;
if (job.dstFlushed == job.cSize) { /* output buffer fully flushed => go to next one */
ZSTDMT_releaseBuffer(zcs->buffPool, job.dstBuff); zcs->jobs[jobID].dstBuff = (buffer_t) { NULL, 0 };
zcs->doneJobID++;
} else {
zcs->jobs[jobID].dstFlushed = job.dstFlushed; /* save flush level into zcs for later retrieval */
} } }
/* recommended next input size : fill current input buffer */
return zcs->inBuffSize - zcs->inBuff.filled;
}
static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, unsigned endFrame)
{
size_t const srcSize = zcs->inBuff.filled;
if ((srcSize > 0) || (endFrame && !zcs->frameEnded)) {
size_t const dstBufferCapacity = ZSTD_compressBound(srcSize);
buffer_t const dstBuffer = ZSTDMT_getBuffer(zcs->buffPool, dstBufferCapacity); /* should check for NULL */
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(zcs->cctxPool); /* should check for NULL */
unsigned const jobID = zcs->nextJobID & zcs->jobIDMask;
zcs->jobs[jobID].src = zcs->inBuff.buffer;
zcs->jobs[jobID].srcStart = zcs->inBuff.buffer.start;
zcs->jobs[jobID].srcSize = srcSize;
zcs->jobs[jobID].fullFrameSize = 0;
zcs->jobs[jobID].params = zcs->params;
zcs->jobs[jobID].dstBuff = dstBuffer;
zcs->jobs[jobID].cctx = cctx;
zcs->jobs[jobID].firstChunk = (jobID==0);
zcs->jobs[jobID].lastChunk = endFrame;
zcs->jobs[jobID].jobCompleted = 0;
zcs->jobs[jobID].dstFlushed = 0;
zcs->jobs[jobID].jobCompleted_mutex = &zcs->jobCompleted_mutex;
zcs->jobs[jobID].jobCompleted_cond = &zcs->jobCompleted_cond;
/* get a new buffer for next input */
if (!endFrame) {
zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize); /* check for NULL ! */
zcs->inBuff.filled = 0;
} else {
zcs->frameEnded = 1;
}
DEBUGLOG(3, "posting job %u (%u bytes)", zcs->nextJobID, (U32)zcs->jobs[jobID].srcSize);
POOL_add(zcs->factory, ZSTDMT_compressChunk, &zcs->jobs[jobID]); /* this call is blocking when thread worker pool is exhausted */
zcs->nextJobID++;
}
/* check if there is any data available to flush */
{ unsigned const wJobID = zcs->doneJobID & zcs->jobIDMask;
PTHREAD_MUTEX_LOCK(&zcs->jobCompleted_mutex);
while (zcs->jobs[wJobID].jobCompleted==0) {
DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", zcs->doneJobID); /* we want to block when waiting for data to flush */
pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex);
}
pthread_mutex_unlock(&zcs->jobCompleted_mutex);
{ /* job completed : output can be flushed */
ZSTDMT_jobDescription job = zcs->jobs[wJobID];
size_t const toWrite = MIN(job.cSize - job.dstFlushed, output->size - output->pos);
ZSTDMT_releaseCCtx(zcs->cctxPool, job.cctx); zcs->jobs[wJobID].cctx = NULL; /* release cctx for future task */
ZSTDMT_releaseBuffer(zcs->buffPool, job.src); zcs->jobs[wJobID].srcStart = NULL; zcs->jobs[wJobID].src = (buffer_t) { NULL, 0 };
memcpy((char*)output->dst + output->pos, (const char*)job.dstBuff.start + job.dstFlushed, toWrite);
output->pos += toWrite;
job.dstFlushed += toWrite;
if (job.dstFlushed == job.cSize) { /* output buffer fully flushed => next one */
ZSTDMT_releaseBuffer(zcs->buffPool, job.dstBuff); zcs->jobs[wJobID].dstBuff = (buffer_t) { NULL, 0 };
zcs->doneJobID++;
} else {
zcs->jobs[wJobID].dstFlushed = job.dstFlushed;
}
/* return value : how many bytes left in buffer ; fake it to 1 if unknown but >0 */
if (job.cSize > job.dstFlushed) return (job.cSize - job.dstFlushed);
return (zcs->doneJobID < zcs->nextJobID);
} }
}
size_t ZSTDMT_flushStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output)
{
return ZSTDMT_flushStream_internal(zcs, output, 0);
}
size_t ZSTDMT_endStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output)
{
return ZSTDMT_flushStream_internal(zcs, output, 1);
}
#endif