#include /* malloc */ #include /* memcpy */ #include /* threadpool */ #include "threading.h" /* mutex */ #include "zstd_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ #include "zstdmt_compress.h" #if 0 # include # include # include static unsigned g_debugLevel = 2; # define DEBUGLOG(l, ...) if (l<=g_debugLevel) { fprintf(stderr, __VA_ARGS__); fprintf(stderr, " \n"); } static unsigned long long GetCurrentClockTimeMicroseconds() { static clock_t _ticksPerSecond = 0; if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); struct tms junk; clock_t newTicks = (clock_t) times(&junk); return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); } #define MUTEX_WAIT_TIME_DLEVEL 5 #define PTHREAD_MUTEX_LOCK(mutex) \ if (g_debugLevel>=MUTEX_WAIT_TIME_DLEVEL) { \ unsigned long long beforeTime = GetCurrentClockTimeMicroseconds(); \ pthread_mutex_lock(mutex); \ unsigned long long afterTime = GetCurrentClockTimeMicroseconds(); \ unsigned long long elapsedTime = (afterTime-beforeTime); \ if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \ DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \ elapsedTime, #mutex); \ } \ } else pthread_mutex_lock(mutex); #else # define DEBUGLOG(l, ...) {} /* disabled */ # define PTHREAD_MUTEX_LOCK(m) pthread_mutex_lock(m) #endif #define ZSTDMT_NBTHREADS_MAX 128 /* ===== Buffer Pool ===== */ typedef struct buffer_s { void* start; size_t size; } buffer_t; typedef struct ZSTDMT_bufferPool_s { unsigned totalBuffers;; unsigned nbBuffers; buffer_t bTable[1]; /* variable size */ } ZSTDMT_bufferPool; static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbThreads) { unsigned const maxNbBuffers = 2*nbThreads + 2; ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)calloc(1, sizeof(ZSTDMT_bufferPool) + maxNbBuffers * sizeof(buffer_t)); if (bufPool==NULL) return NULL; bufPool->totalBuffers = maxNbBuffers; return bufPool; } static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) { unsigned u; if (!bufPool) return; /* compatibility with free on NULL */ for (u=0; utotalBuffers; u++) free(bufPool->bTable[u].start); free(bufPool); } /* assumption : invocation from main thread only ! */ static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* pool, size_t bSize) { if (pool->nbBuffers) { /* try to use an existing buffer */ buffer_t const buf = pool->bTable[--(pool->nbBuffers)]; size_t const availBufferSize = buf.size; if ((availBufferSize >= bSize) & (availBufferSize <= 10*bSize)) /* large enough, but not too much */ return buf; free(buf.start); /* size conditions not respected : scratch this buffer and create a new one */ } /* create new buffer */ { void* const start = malloc(bSize); if (start==NULL) bSize = 0; return (buffer_t) { start, bSize }; /* note : start can be NULL if malloc fails ! */ } } /* store buffer for later re-use, up to pool capacity */ static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* pool, buffer_t buf) { if (buf.start == NULL) return; /* release on NULL */ if (pool->nbBuffers < pool->totalBuffers) { pool->bTable[pool->nbBuffers++] = buf; /* store for later re-use */ return; } /* Reached bufferPool capacity (should not happen) */ free(buf.start); } /* ===== CCtx Pool ===== */ typedef struct { unsigned totalCCtx; unsigned availCCtx; ZSTD_CCtx* cctx[1]; /* variable size */ } ZSTDMT_CCtxPool; /* assumption : CCtxPool invocation only from main thread */ /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */ static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) { unsigned u; for (u=0; uavailCCtx; u++) /* note : availCCtx is supposed == totalCCtx; otherwise, some CCtx are still in use */ ZSTD_freeCCtx(pool->cctx[u]); free(pool); } static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(unsigned nbThreads) { ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) calloc(1, sizeof(ZSTDMT_CCtxPool) + nbThreads*sizeof(ZSTD_CCtx*)); if (!cctxPool) return NULL; { unsigned threadNb; for (threadNb=0; threadNbcctx[threadNb] = ZSTD_createCCtx(); if (cctxPool->cctx[threadNb]==NULL) { /* failed cctx allocation : abort cctxPool creation */ cctxPool->totalCCtx = cctxPool->availCCtx = threadNb; ZSTDMT_freeCCtxPool(cctxPool); return NULL; } } } cctxPool->totalCCtx = cctxPool->availCCtx = nbThreads; return cctxPool; } static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* pool) { if (pool->availCCtx) { pool->availCCtx--; return pool->cctx[pool->availCCtx]; } /* note : should not be possible, since totalCCtx==nbThreads */ return ZSTD_createCCtx(); /* note : can be NULL is creation fails ! */ } static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) { if (cctx==NULL) return; /* release on NULL */ if (pool->availCCtx < pool->totalCCtx) pool->cctx[pool->availCCtx++] = cctx; else /* note : should not be possible, since totalCCtx==nbThreads */ ZSTD_freeCCtx(cctx); } /* ===== Thread worker ===== */ typedef struct { buffer_t buffer; size_t filled; } inBuff_t; typedef struct { ZSTD_CCtx* cctx; buffer_t src; const void* srcStart; size_t srcSize; buffer_t dstBuff; size_t cSize; size_t dstFlushed; unsigned long long fullFrameSize; unsigned firstChunk; unsigned lastChunk; unsigned jobCompleted; pthread_mutex_t* jobCompleted_mutex; pthread_cond_t* jobCompleted_cond; ZSTD_parameters params; } ZSTDMT_jobDescription; /* ZSTDMT_compressChunk() : POOL_function type */ void ZSTDMT_compressChunk(void* jobDescription) { ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; buffer_t dstBuff = job->dstBuff; size_t hSize = ZSTD_compressBegin_advanced(job->cctx, NULL, 0, job->params, job->fullFrameSize); if (ZSTD_isError(hSize)) { job->cSize = hSize; goto _endJob; } hSize = ZSTD_compressContinue(job->cctx, dstBuff.start, dstBuff.size, job->srcStart, 0); /* flush frame header */ if (ZSTD_isError(hSize)) { job->cSize = hSize; goto _endJob; } if (job->firstChunk) { /* preserve frame header when it is first chunk */ dstBuff.start = (char*)dstBuff.start + hSize; dstBuff.size -= hSize; } else /* otherwise, overwrite */ hSize = 0; job->cSize = (job->lastChunk) ? /* last chunk signal */ ZSTD_compressEnd(job->cctx, dstBuff.start, dstBuff.size, job->srcStart, job->srcSize) : ZSTD_compressContinue(job->cctx, dstBuff.start, dstBuff.size, job->srcStart, job->srcSize); if (!ZSTD_isError(job->cSize)) job->cSize += hSize; DEBUGLOG(5, "chunk %u : compressed %u bytes into %u bytes ", (unsigned)job->lastChunk, (unsigned)job->srcSize, (unsigned)job->cSize); _endJob: PTHREAD_MUTEX_LOCK(job->jobCompleted_mutex); job->jobCompleted = 1; pthread_cond_signal(job->jobCompleted_cond); pthread_mutex_unlock(job->jobCompleted_mutex); } /* ------------------------------------------ */ /* ===== Multi-threaded compression ===== */ /* ------------------------------------------ */ struct ZSTDMT_CCtx_s { POOL_ctx* factory; ZSTDMT_bufferPool* buffPool; ZSTDMT_CCtxPool* cctxPool; pthread_mutex_t jobCompleted_mutex; pthread_cond_t jobCompleted_cond; size_t targetSectionSize; size_t inBuffSize; inBuff_t inBuff; ZSTD_parameters params; unsigned nbThreads; unsigned jobIDMask; unsigned doneJobID; unsigned nextJobID; unsigned frameEnded; ZSTDMT_jobDescription jobs[1]; /* variable size (must lies at the end) */ }; ZSTDMT_CCtx *ZSTDMT_createCCtx(unsigned nbThreads) { ZSTDMT_CCtx* cctx; U32 const minNbJobs = nbThreads + 1; U32 const nbJobsLog2 = ZSTD_highbit32(minNbJobs) + 1; U32 const nbJobs = 1 << nbJobsLog2; DEBUGLOG(4, "nbThreads : %u ; minNbJobs : %u ; nbJobsLog2 : %u ; nbJobs : %u \n", nbThreads, minNbJobs, nbJobsLog2, nbJobs); if ((nbThreads < 1) | (nbThreads > ZSTDMT_NBTHREADS_MAX)) return NULL; cctx = (ZSTDMT_CCtx*) calloc(1, sizeof(ZSTDMT_CCtx) + nbJobs*sizeof(ZSTDMT_jobDescription)); if (!cctx) return NULL; cctx->nbThreads = nbThreads; cctx->jobIDMask = nbJobs - 1; cctx->factory = POOL_create(nbThreads, 1); cctx->buffPool = ZSTDMT_createBufferPool(nbThreads); cctx->cctxPool = ZSTDMT_createCCtxPool(nbThreads); if (!cctx->factory | !cctx->buffPool | !cctx->cctxPool) { /* one object was not created */ ZSTDMT_freeCCtx(cctx); return NULL; } pthread_mutex_init(&cctx->jobCompleted_mutex, NULL); /* Todo : check init function return */ pthread_cond_init(&cctx->jobCompleted_cond, NULL); return cctx; } size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) { POOL_free(mtctx->factory); ZSTDMT_freeBufferPool(mtctx->buffPool); ZSTDMT_freeCCtxPool(mtctx->cctxPool); pthread_mutex_destroy(&mtctx->jobCompleted_mutex); pthread_cond_destroy(&mtctx->jobCompleted_cond); free(mtctx); return 0; } size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize, int compressionLevel) { ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0); size_t const chunkTargetSize = (size_t)1 << (params.cParams.windowLog + 2); unsigned const nbChunksMax = (unsigned)(srcSize / chunkTargetSize) + (srcSize < chunkTargetSize) /* min 1 */; unsigned nbChunks = MIN(nbChunksMax, mtctx->nbThreads); size_t const proposedChunkSize = (srcSize + (nbChunks-1)) / nbChunks; size_t const avgChunkSize = ((proposedChunkSize & 0x1FFFF) < 0xFFFF) ? proposedChunkSize + 0xFFFF : proposedChunkSize; /* avoid too small last block */ size_t remainingSrcSize = srcSize; const char* const srcStart = (const char*)src; size_t frameStartPos = 0; DEBUGLOG(3, "windowLog : %2u => chunkTargetSize : %u bytes ", params.cParams.windowLog, (U32)chunkTargetSize); DEBUGLOG(2, "nbChunks : %2u (chunkSize : %u bytes) ", nbChunks, (U32)avgChunkSize); params.fParams.contentSizeFlag = 1; { unsigned u; for (u=0; ubuffPool, dstBufferCapacity) : (buffer_t){ dst, dstCapacity }; ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(mtctx->cctxPool); if ((cctx==NULL) || (dstBuffer.start==NULL)) { mtctx->jobs[u].cSize = ERROR(memory_allocation); /* job result */ mtctx->jobs[u].jobCompleted = 1; nbChunks = u+1; break; /* let's wait for previous jobs to complete, but don't start new ones */ } mtctx->jobs[u].srcStart = srcStart + frameStartPos; mtctx->jobs[u].srcSize = chunkSize; mtctx->jobs[u].fullFrameSize = srcSize; mtctx->jobs[u].params = params; mtctx->jobs[u].dstBuff = dstBuffer; mtctx->jobs[u].cctx = cctx; mtctx->jobs[u].firstChunk = (u==0); mtctx->jobs[u].lastChunk = (u==nbChunks-1); mtctx->jobs[u].jobCompleted = 0; mtctx->jobs[u].jobCompleted_mutex = &mtctx->jobCompleted_mutex; mtctx->jobs[u].jobCompleted_cond = &mtctx->jobCompleted_cond; DEBUGLOG(3, "posting job %u (%u bytes)", u, (U32)chunkSize); POOL_add(mtctx->factory, ZSTDMT_compressChunk, &mtctx->jobs[u]); frameStartPos += chunkSize; remainingSrcSize -= chunkSize; } } /* note : since nbChunks <= nbThreads, all jobs should be running immediately in parallel */ { unsigned chunkID; size_t error = 0, dstPos = 0; for (chunkID=0; chunkIDjobCompleted_mutex); while (mtctx->jobs[chunkID].jobCompleted==0) { DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", chunkID); pthread_cond_wait(&mtctx->jobCompleted_cond, &mtctx->jobCompleted_mutex); } pthread_mutex_unlock(&mtctx->jobCompleted_mutex); ZSTDMT_releaseCCtx(mtctx->cctxPool, mtctx->jobs[chunkID].cctx); { size_t const cSize = mtctx->jobs[chunkID].cSize; if (ZSTD_isError(cSize)) error = cSize; if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall); if (chunkID) { /* note : chunk 0 is already written directly into dst */ if (!error) memcpy((char*)dst + dstPos, mtctx->jobs[chunkID].dstBuff.start, cSize); ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[chunkID].dstBuff); } dstPos += cSize ; } } if (!error) DEBUGLOG(3, "compressed size : %u ", (U32)dstPos); return error ? error : dstPos; } } /* ====================================== */ /* ======= Streaming API ======= */ /* ====================================== */ #if 1 size_t ZSTDMT_initCStream(ZSTDMT_CCtx* zcs, int compressionLevel) { zcs->params = ZSTD_getParams(compressionLevel, 0, 0); zcs->targetSectionSize = (size_t)1 << (zcs->params.cParams.windowLog + 2); zcs->inBuffSize = 5 * (1 << zcs->params.cParams.windowLog); zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize); /* check for NULL ! */ zcs->inBuff.filled = 0; zcs->doneJobID = 0; zcs->nextJobID = 0; zcs->frameEnded = 0; return 0; } size_t ZSTDMT_compressStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, ZSTD_inBuffer* input) { if (zcs->frameEnded) return ERROR(stage_wrong); /* fill input buffer */ { size_t const toLoad = MIN(input->size - input->pos, zcs->inBuffSize - zcs->inBuff.filled); memcpy((char*)zcs->inBuff.buffer.start + zcs->inBuff.filled, input->src, toLoad); input->pos += toLoad; } if (zcs->inBuff.filled == zcs->inBuffSize) { /* filled enough : let's compress */ size_t const dstBufferCapacity = ZSTD_compressBound(zcs->targetSectionSize); buffer_t const dstBuffer = ZSTDMT_getBuffer(zcs->buffPool, dstBufferCapacity); ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(zcs->cctxPool); unsigned const jobID = zcs->nextJobID & zcs->jobIDMask; if ((cctx==NULL) || (dstBuffer.start==NULL)) { zcs->jobs[jobID].cSize = ERROR(memory_allocation); /* job result : how to collect that error ? */ zcs->jobs[jobID].jobCompleted = 1; } zcs->jobs[jobID].src = zcs->inBuff.buffer; zcs->jobs[jobID].srcStart = zcs->inBuff.buffer.start; zcs->jobs[jobID].srcSize = zcs->targetSectionSize; zcs->jobs[jobID].fullFrameSize = 0; zcs->jobs[jobID].params = zcs->params; zcs->jobs[jobID].dstBuff = dstBuffer; zcs->jobs[jobID].cctx = cctx; zcs->jobs[jobID].firstChunk = (jobID==0); zcs->jobs[jobID].lastChunk = 0; zcs->jobs[jobID].jobCompleted = 0; zcs->jobs[jobID].dstFlushed = 0; zcs->jobs[jobID].jobCompleted_mutex = &zcs->jobCompleted_mutex; zcs->jobs[jobID].jobCompleted_cond = &zcs->jobCompleted_cond; /* get a new buffer for next input - save remaining into it */ zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize); /* check for NULL ! */ zcs->inBuff.filled = (U32)(zcs->inBuffSize - zcs->targetSectionSize); memcpy(zcs->inBuff.buffer.start, (const char*)zcs->jobs[jobID].srcStart + zcs->targetSectionSize, zcs->inBuff.filled); DEBUGLOG(3, "posting job %u (%u bytes)", zcs->nextJobID, (U32)zcs->jobs[jobID].srcSize); POOL_add(zcs->factory, ZSTDMT_compressChunk, &zcs->jobs[jobID]); zcs->nextJobID++; } /* check if there is any data available to flush */ { unsigned const jobID = zcs->doneJobID & zcs->jobIDMask; ZSTDMT_jobDescription job = zcs->jobs[jobID]; if (job.jobCompleted) { /* job completed : output can be flushed */ size_t const toWrite = MIN(job.cSize - job.dstFlushed, output->size - output->pos); ZSTDMT_releaseCCtx(zcs->cctxPool, job.cctx); zcs->jobs[jobID].cctx = NULL; /* release cctx for future task */ ZSTDMT_releaseBuffer(zcs->buffPool, job.src); zcs->jobs[jobID].srcStart = NULL; zcs->jobs[jobID].src = (buffer_t) { NULL, 0 }; memcpy((char*)output->dst + output->pos, (const char*)job.dstBuff.start + job.dstFlushed, toWrite); output->pos += toWrite; job.dstFlushed += toWrite; if (job.dstFlushed == job.cSize) { /* output buffer fully flushed => go to next one */ ZSTDMT_releaseBuffer(zcs->buffPool, job.dstBuff); zcs->jobs[jobID].dstBuff = (buffer_t) { NULL, 0 }; zcs->doneJobID++; } else { zcs->jobs[jobID].dstFlushed = job.dstFlushed; /* save flush level into zcs for later retrieval */ } } } /* recommended next input size : fill current input buffer */ return zcs->inBuffSize - zcs->inBuff.filled; } static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output, unsigned endFrame) { size_t const srcSize = zcs->inBuff.filled; if ((srcSize > 0) || (endFrame && !zcs->frameEnded)) { size_t const dstBufferCapacity = ZSTD_compressBound(srcSize); buffer_t const dstBuffer = ZSTDMT_getBuffer(zcs->buffPool, dstBufferCapacity); /* should check for NULL */ ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(zcs->cctxPool); /* should check for NULL */ unsigned const jobID = zcs->nextJobID & zcs->jobIDMask; zcs->jobs[jobID].src = zcs->inBuff.buffer; zcs->jobs[jobID].srcStart = zcs->inBuff.buffer.start; zcs->jobs[jobID].srcSize = srcSize; zcs->jobs[jobID].fullFrameSize = 0; zcs->jobs[jobID].params = zcs->params; zcs->jobs[jobID].dstBuff = dstBuffer; zcs->jobs[jobID].cctx = cctx; zcs->jobs[jobID].firstChunk = (jobID==0); zcs->jobs[jobID].lastChunk = endFrame; zcs->jobs[jobID].jobCompleted = 0; zcs->jobs[jobID].dstFlushed = 0; zcs->jobs[jobID].jobCompleted_mutex = &zcs->jobCompleted_mutex; zcs->jobs[jobID].jobCompleted_cond = &zcs->jobCompleted_cond; /* get a new buffer for next input */ if (!endFrame) { zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize); /* check for NULL ! */ zcs->inBuff.filled = 0; } else { zcs->frameEnded = 1; } DEBUGLOG(3, "posting job %u (%u bytes)", zcs->nextJobID, (U32)zcs->jobs[jobID].srcSize); POOL_add(zcs->factory, ZSTDMT_compressChunk, &zcs->jobs[jobID]); /* this call is blocking when thread worker pool is exhausted */ zcs->nextJobID++; } /* check if there is any data available to flush */ { unsigned const wJobID = zcs->doneJobID & zcs->jobIDMask; PTHREAD_MUTEX_LOCK(&zcs->jobCompleted_mutex); while (zcs->jobs[wJobID].jobCompleted==0) { DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", zcs->doneJobID); /* we want to block when waiting for data to flush */ pthread_cond_wait(&zcs->jobCompleted_cond, &zcs->jobCompleted_mutex); } pthread_mutex_unlock(&zcs->jobCompleted_mutex); { /* job completed : output can be flushed */ ZSTDMT_jobDescription job = zcs->jobs[wJobID]; size_t const toWrite = MIN(job.cSize - job.dstFlushed, output->size - output->pos); ZSTDMT_releaseCCtx(zcs->cctxPool, job.cctx); zcs->jobs[wJobID].cctx = NULL; /* release cctx for future task */ ZSTDMT_releaseBuffer(zcs->buffPool, job.src); zcs->jobs[wJobID].srcStart = NULL; zcs->jobs[wJobID].src = (buffer_t) { NULL, 0 }; memcpy((char*)output->dst + output->pos, (const char*)job.dstBuff.start + job.dstFlushed, toWrite); output->pos += toWrite; job.dstFlushed += toWrite; if (job.dstFlushed == job.cSize) { /* output buffer fully flushed => next one */ ZSTDMT_releaseBuffer(zcs->buffPool, job.dstBuff); zcs->jobs[wJobID].dstBuff = (buffer_t) { NULL, 0 }; zcs->doneJobID++; } else { zcs->jobs[wJobID].dstFlushed = job.dstFlushed; } /* return value : how many bytes left in buffer ; fake it to 1 if unknown but >0 */ if (job.cSize > job.dstFlushed) return (job.cSize - job.dstFlushed); return (zcs->doneJobID < zcs->nextJobID); } } } size_t ZSTDMT_flushStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output) { return ZSTDMT_flushStream_internal(zcs, output, 0); } size_t ZSTDMT_endStream(ZSTDMT_CCtx* zcs, ZSTD_outBuffer* output) { return ZSTDMT_flushStream_internal(zcs, output, 1); } #endif