warzone2100/lib/ivis_opengl/piedraw.c

849 lines
22 KiB
C
Raw Normal View History

/*
This file is part of Warzone 2100.
Copyright (C) 1999-2004 Eidos Interactive
Copyright (C) 2005-2007 Warzone Resurrection Project
Warzone 2100 is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Warzone 2100 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Warzone 2100; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/** \file
* Render routines for 3D coloured and shaded transparency rendering.
*/
#include "lib/ivis_opengl/GLee.h"
#include <string.h>
#include <SDL_video.h>
#include "lib/framework/frame.h"
#include "lib/ivis_common/ivisdef.h"
#include "lib/ivis_common/imd.h"
#include "lib/ivis_common/rendmode.h"
#include "lib/ivis_common/piefunc.h"
#include "lib/ivis_common/tex.h"
#include "lib/ivis_common/piedef.h"
#include "lib/ivis_common/piestate.h"
#include "lib/ivis_common/pieclip.h"
#include "piematrix.h"
#include "screen.h"
#define SHADOW_END_DISTANCE (8000*8000) // Keep in sync with lighting.c:FOG_END
#define VERTICES_PER_TRIANGLE 3
#define COLOUR_COMPONENTS 4
#define TEXCOORD_COMPONENTS 2
#define VERTEX_COMPONENTS 3
#define TRIANGLES_PER_TILE 2
#define VERTICES_PER_TILE (TRIANGLES_PER_TILE * VERTICES_PER_TRIANGLE)
static GLubyte *aColour = NULL;
static GLfloat *aTexCoord = NULL;
static GLfloat *aVertex = NULL;
static GLuint rowLength; ///< Length of one array table row in tiles
extern BOOL drawing_interface;
/*
* Local Variables
*/
static unsigned int pieCount = 0;
static unsigned int tileCount = 0;
static unsigned int polyCount = 0;
static BOOL lighting = false;
static BOOL shadows = false;
/*
* Source
*/
void pie_BeginLighting(const Vector3f * light)
{
const float pos[4] = {light->x, light->y, light->z, 0.0f};
const float zero[4] = {0.0f, 0.0f, 0.0f, 0.0f};
const float ambient[4] = {0.3f, 0.3f, 0.3f, 1.0f};
const float diffuse[4] = {0.8f, 0.8f, 0.8f, 1.0f};
const float specular[4] = {1.0f, 1.0f, 1.0f, 1.0f};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, zero);
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_FALSE);
glLightfv(GL_LIGHT0, GL_POSITION, pos);
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
glEnable(GL_LIGHT0);
// lighting = true;
shadows = true;
}
void pie_EndLighting(void)
{
shadows = false;
lighting = false;
}
/***************************************************************************
* pie_Draw3dShape
*
* Project and render a pumpkin image to render surface
* Will support zbuffering, texturing, coloured lighting and alpha effects
* Avoids recalculating vertex projections for every poly
***************************************************************************/
typedef struct {
float matrix[16];
iIMDShape* shape;
int flag;
int flag_data;
Vector3f light;
} shadowcasting_shape_t;
typedef struct {
float matrix[16];
iIMDShape* shape;
int frame;
PIELIGHT colour;
PIELIGHT specular;
int flag;
int flag_data;
} transluscent_shape_t;
static shadowcasting_shape_t* scshapes = NULL;
static unsigned int scshapes_size = 0;
static unsigned int nb_scshapes = 0;
static transluscent_shape_t* tshapes = NULL;
static unsigned int tshapes_size = 0;
static unsigned int nb_tshapes = 0;
static void pie_Draw3DShape2(iIMDShape *shape, int frame, PIELIGHT colour, WZ_DECL_UNUSED PIELIGHT specular, int pieFlag, int pieFlagData)
{
Vector3f *pVertices, *pPixels, scrPoints[pie_MAX_VERTICES];
iIMDPoly *pPolys;
BOOL light = lighting;
pie_SetAlphaTest(true);
/* Set tranlucency */
if (pieFlag & pie_ADDITIVE)
{ //Assume also translucent
pie_SetFogStatus(false);
pie_SetRendMode(REND_ADDITIVE_TEX);
colour.byte.a = (UBYTE)pieFlagData;
light = false;
}
else if (pieFlag & pie_TRANSLUCENT)
{
pie_SetFogStatus(false);
pie_SetRendMode(REND_ALPHA_TEX);
colour.byte.a = (UBYTE)pieFlagData;
light = false;
}
else
{
if (pieFlag & pie_BUTTON)
{
pie_SetFogStatus(false);
pie_SetDepthBufferStatus(DEPTH_CMP_LEQ_WRT_ON);
}
else
{
pie_SetFogStatus(true);
}
pie_SetRendMode(REND_GOURAUD_TEX);
}
if (light)
{
const float ambient[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
const float diffuse[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
const float specular[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
const float shininess = 10;
glEnable(GL_LIGHTING);
glEnable(GL_NORMALIZE);
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, shininess);
}
if (pieFlag & pie_RAISE)
{
pieFlagData = (shape->max.y * (pie_RAISE_SCALE - pieFlagData)) / pie_RAISE_SCALE;
}
pie_SetTexturePage(shape->texpage);
//now draw the shape
//rotate and project points from shape->points to scrPoints
for (pVertices = shape->points, pPixels = scrPoints;
pVertices < shape->points + shape->npoints;
pVertices++, pPixels++)
{
float tempY = pVertices->y;
if (pieFlag & pie_RAISE)
{
tempY = pVertices->y - pieFlagData;
if (tempY < 0)
tempY = 0;
}
else if ( (pieFlag & pie_HEIGHT_SCALED) && pVertices->y > 0 )
{
tempY = (pVertices->y * pieFlagData) / pie_RAISE_SCALE;
}
pPixels->x = pVertices->x;
pPixels->y = tempY;
pPixels->z = pVertices->z;
}
glColor4ubv(colour.vector); // Only need to set once for entire model
for (pPolys = shape->polys;
pPolys < shape->polys + shape->npolys;
pPolys++)
{
Vector2f texCoords[pie_MAX_VERTICES_PER_POLYGON];
Vector3f vertexCoords[pie_MAX_VERTICES_PER_POLYGON];
int n;
VERTEXID *index;
for (n = 0, index = pPolys->pindex;
n < pPolys->npnts;
n++, index++)
{
vertexCoords[n].x = scrPoints[*index].x;
vertexCoords[n].y = scrPoints[*index].y;
vertexCoords[n].z = scrPoints[*index].z;
texCoords[n].x = pPolys->texCoord[n].x;
texCoords[n].y = pPolys->texCoord[n].y;
}
polyCount++;
if (frame != 0 && pPolys->flags & iV_IMD_TEXANIM)
{
frame %= pPolys->texAnim.nFrames;
if (frame > 0)
{
const int framesPerLine = 256 / pPolys->texAnim.textureWidth;
const int uFrame = (frame % framesPerLine) * pPolys->texAnim.textureWidth;
const int vFrame = (frame / framesPerLine) * pPolys->texAnim.textureHeight;
for (n = 0; n < pPolys->npnts; n++)
{
texCoords[n].x += uFrame;
texCoords[n].y += vFrame;
}
}
}
if (pPolys->flags & PIE_NO_CULL)
{
glDisable(GL_CULL_FACE);
}
glBegin(GL_TRIANGLE_FAN);
if (light)
{
glNormal3fv((GLfloat*)&pPolys->normal);
}
for (n = 0; n < pPolys->npnts; n++)
{
glTexCoord2fv((GLfloat*)&texCoords[n]);
glVertex3fv((GLfloat*)&vertexCoords[n]);
}
glEnd();
if (pPolys->flags & PIE_NO_CULL)
{
glEnable(GL_CULL_FACE);
}
}
if (pieFlag & pie_BUTTON)
{
pie_SetDepthBufferStatus(DEPTH_CMP_ALWAYS_WRT_ON);
}
if (light)
{
glDisable(GL_LIGHTING);
glDisable(GL_NORMALIZE);
}
}
/// returns true if the edges are adjacent
static int compare_edge (EDGE *A, EDGE *B, const Vector3f *pVertices )
{
if(A->from == B->to)
{
if(A->to == B->from)
{
return true;
}
return Vector3f_Compare(pVertices[A->to], pVertices[B->from]);
}
if(!Vector3f_Compare(pVertices[A->from], pVertices[B->to]))
{
return false;
}
if(A->to == B->from)
{
return true;
}
return Vector3f_Compare(pVertices[A->to], pVertices[B->from]);
}
/// Add an edge to an edgelist
/// Makes sure only silhouette edges are present
static void addToEdgeList(int a, int b, EDGE *edgelist, unsigned int* edge_count, Vector3f *pVertices)
{
EDGE newEdge = {a, b};
unsigned int i;
BOOL foundMatching = false;
for(i = 0; i < *edge_count; i++)
{
if(edgelist[i].from < 0)
{
// does not exist anymore
continue;
}
if(compare_edge(&newEdge, &edgelist[i], pVertices)) {
// remove the other too
edgelist[i].from = -1;
foundMatching = true;
break;
}
}
if(!foundMatching)
{
edgelist[*edge_count] = newEdge;
(*edge_count)++;
}
}
/// scale the height according to the flags
static inline float scale_y(float y, int flag, int flag_data)
{
float tempY = y;
if (flag & pie_RAISE) {
tempY = y - flag_data;
if (y - flag_data < 0) tempY = 0;
} else if (flag & pie_HEIGHT_SCALED) {
if(y>0) {
tempY = (y * flag_data)/pie_RAISE_SCALE;
}
}
return tempY;
}
/// Draw the shadow for a shape
static void pie_DrawShadow(iIMDShape *shape, int flag, int flag_data, Vector3f* light)
{
unsigned int i, j, n;
Vector3f *pVertices;
iIMDPoly *pPolys;
unsigned int edge_count = 0;
static EDGE *edgelist = NULL;
static unsigned int edgelistsize = 256;
EDGE *drawlist = NULL;
if(!edgelist)
{
edgelist = (EDGE*)malloc(sizeof(EDGE)*edgelistsize);
}
pVertices = shape->points;
if( flag & pie_STATIC_SHADOW && shape->shadowEdgeList )
{
drawlist = shape->shadowEdgeList;
edge_count = shape->nShadowEdges;
}
else
{
for (i = 0, pPolys = shape->polys; i < shape->npolys; ++i, ++pPolys) {
Vector3f p[3], v[2], normal = {0.0f, 0.0f, 0.0f};
VERTEXID current, first;
for(j = 0; j < 3; j++)
{
current = pPolys->pindex[j];
Vector3f_Set(&p[j], pVertices[current].x, scale_y(pVertices[current].y, flag, flag_data), pVertices[current].z);
}
v[0] = Vector3f_Sub(p[2], p[0]);
v[1] = Vector3f_Sub(p[1], p[0]);
normal = Vector3f_CrossP(v[0], v[1]);
if (Vector3f_ScalarP(normal, *light) > 0)
{
first = pPolys->pindex[0];
for (n = 1; n < pPolys->npnts; n++) {
// link to the previous vertex
addToEdgeList(pPolys->pindex[n-1], pPolys->pindex[n], edgelist, &edge_count, pVertices);
// check if the edgelist is still large enough
if(edge_count >= edgelistsize-1)
{
// enlarge
EDGE* newstack;
edgelistsize *= 2;
newstack = realloc(edgelist, sizeof(EDGE) * edgelistsize);
if (newstack == NULL)
{
debug(LOG_ERROR, "pie_DrawShadow: Out of memory!");
abort();
return;
}
edgelist = newstack;
debug(LOG_WARNING, "new edge list size: %u", edgelistsize);
}
}
// back to the first
addToEdgeList(pPolys->pindex[pPolys->npnts-1], first, edgelist, &edge_count, pVertices);
}
}
//debug(LOG_WARNING, "we have %i edges", edge_count);
drawlist = edgelist;
if(flag & pie_STATIC_SHADOW)
{
// first compact the current edgelist
for(i = 0, j = 0; i < edge_count; i++)
{
if(edgelist[i].from < 0)
{
continue;
}
edgelist[j] = edgelist[i];
j++;
}
edge_count = j;
// then store it in the imd
shape->nShadowEdges = edge_count;
shape->shadowEdgeList = realloc(shape->shadowEdgeList, sizeof(EDGE) * shape->nShadowEdges);
memcpy(shape->shadowEdgeList, edgelist, sizeof(EDGE) * shape->nShadowEdges);
}
}
// draw the shadow volume
glBegin(GL_QUADS);
for(i=0;i<edge_count;i++)
{
int a = drawlist[i].from, b = drawlist[i].to;
if(a < 0)
{
continue;
}
glVertex3f(pVertices[b].x, scale_y(pVertices[b].y, flag, flag_data), pVertices[b].z);
glVertex3f(pVertices[b].x+light->x, scale_y(pVertices[b].y, flag, flag_data)+light->y, pVertices[b].z+light->z);
glVertex3f(pVertices[a].x+light->x, scale_y(pVertices[a].y, flag, flag_data)+light->y, pVertices[a].z+light->z);
glVertex3f(pVertices[a].x, scale_y(pVertices[a].y, flag, flag_data), pVertices[a].z);
}
glEnd();
#ifdef SHOW_SHADOW_EDGES
glDisable(GL_DEPTH_TEST);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glColor4ub(0xFF, 0, 0, 0xFF);
glBegin(GL_LINES);
for(i = 0; i < edge_count; i++)
{
int a = drawlist[i].from, b = drawlist[i].to;
if(a < 0)
{
continue;
}
glVertex3f(pVertices[b].x, scale_y(pVertices[b].y, flag, flag_data), pVertices[b].z);
glVertex3f(pVertices[a].x, scale_y(pVertices[a].y, flag, flag_data), pVertices[a].z);
}
glEnd();
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glEnable(GL_DEPTH_TEST);
#endif
}
static void inverse_matrix(const float * src, float * dst)
{
const float det = src[0]*src[5]*src[10] + src[4]*src[9]*src[2] + src[8]*src[1]*src[6] - src[2]*src[5]*src[8] - src[6]*src[9]*src[0] - src[10]*src[1]*src[4];
const float invdet = 1.0f/det;
dst[0] = invdet * (src[5]*src[10] - src[9]*src[6]);
dst[1] = invdet * (src[9]*src[2] - src[1]*src[10]);
dst[2] = invdet * (src[1]*src[6] - src[5]*src[2]);
dst[3] = invdet * (src[8]*src[6] - src[4]*src[10]);
dst[4] = invdet * (src[0]*src[10] - src[8]*src[2]);
dst[5] = invdet * (src[4]*src[2] - src[0]*src[6]);
dst[6] = invdet * (src[4]*src[9] - src[8]*src[5]);
dst[7] = invdet * (src[8]*src[1] - src[0]*src[9]);
dst[8] = invdet * (src[0]*src[5] - src[4]*src[1]);
}
void pie_CleanUp( void )
{
free( tshapes );
free( scshapes );
tshapes = NULL;
scshapes = NULL;
}
void pie_Draw3DShape(iIMDShape *shape, int frame, int team, PIELIGHT colour, PIELIGHT specular, int pieFlag, int pieFlagData)
{
pieCount++;
// Fix for transparent buildings and features!!
if( (pieFlag & pie_TRANSLUCENT) && (pieFlagData > 220) )
{
// force to bilinear and non-transparent
pieFlag = pieFlag & ~pie_TRANSLUCENT;
pieFlagData = 0;
}
if (frame == 0)
{
frame = team;
}
if (drawing_interface || !shadows)
{
pie_Draw3DShape2(shape, frame, colour, specular, pieFlag, pieFlagData);
}
else
{
if (pieFlag & (pie_ADDITIVE | pie_TRANSLUCENT))
{
if (tshapes_size <= nb_tshapes)
{
if (tshapes_size == 0)
{
tshapes_size = 64;
tshapes = (transluscent_shape_t*)malloc(tshapes_size*sizeof(transluscent_shape_t));
memset( tshapes, 0, tshapes_size*sizeof(transluscent_shape_t) );
}
else
{
const unsigned int old_size = tshapes_size;
tshapes_size <<= 1;
tshapes = (transluscent_shape_t*)realloc(tshapes, tshapes_size*sizeof(transluscent_shape_t));
memset( &tshapes[old_size], 0, (tshapes_size-old_size)*sizeof(transluscent_shape_t) );
}
}
glGetFloatv(GL_MODELVIEW_MATRIX, tshapes[nb_tshapes].matrix);
tshapes[nb_tshapes].shape = shape;
tshapes[nb_tshapes].frame = frame;
tshapes[nb_tshapes].colour = colour;
tshapes[nb_tshapes].specular = specular;
tshapes[nb_tshapes].flag = pieFlag;
tshapes[nb_tshapes].flag_data = pieFlagData;
nb_tshapes++;
}
else
{
if(pieFlag & pie_SHADOW || pieFlag & pie_STATIC_SHADOW)
{
float distance;
// draw a shadow
if (scshapes_size <= nb_scshapes)
{
if (scshapes_size == 0)
{
scshapes_size = 64;
scshapes = (shadowcasting_shape_t*)malloc(scshapes_size*sizeof(shadowcasting_shape_t));
memset( scshapes, 0, scshapes_size*sizeof(shadowcasting_shape_t) );
}
else
{
const unsigned int old_size = scshapes_size;
scshapes_size <<= 1;
scshapes = (shadowcasting_shape_t*)realloc(scshapes, scshapes_size*sizeof(shadowcasting_shape_t));
memset( &scshapes[old_size], 0, (scshapes_size-old_size)*sizeof(shadowcasting_shape_t) );
}
}
glGetFloatv(GL_MODELVIEW_MATRIX, scshapes[nb_scshapes].matrix);
distance = scshapes[nb_scshapes].matrix[12] * scshapes[nb_scshapes].matrix[12];
distance += scshapes[nb_scshapes].matrix[13] * scshapes[nb_scshapes].matrix[13];
distance += scshapes[nb_scshapes].matrix[14] * scshapes[nb_scshapes].matrix[14];
// if object is too far in the fog don't generate a shadow.
if (distance < SHADOW_END_DISTANCE)
{
float invmat[9], pos_light0[4];
inverse_matrix( scshapes[nb_scshapes].matrix, invmat );
// Calculate the light position relative to the object
glGetLightfv(GL_LIGHT0, GL_POSITION, pos_light0);
scshapes[nb_scshapes].light.x = invmat[0] * pos_light0[0] + invmat[3] * pos_light0[1] + invmat[6] * pos_light0[2];
scshapes[nb_scshapes].light.y = invmat[1] * pos_light0[0] + invmat[4] * pos_light0[1] + invmat[7] * pos_light0[2];
scshapes[nb_scshapes].light.z = invmat[2] * pos_light0[0] + invmat[5] * pos_light0[1] + invmat[8] * pos_light0[2];
scshapes[nb_scshapes].shape = shape;
scshapes[nb_scshapes].flag = pieFlag;
scshapes[nb_scshapes].flag_data = pieFlagData;
nb_scshapes++;
}
}
pie_Draw3DShape2(shape, frame, colour, specular, pieFlag, pieFlagData);
}
}
}
static void pie_ShadowDrawLoop(void)
{
unsigned int i = 0;
for (i = 0; i < nb_scshapes; i++)
{
glLoadMatrixf(scshapes[i].matrix);
pie_DrawShadow(scshapes[i].shape, scshapes[i].flag, scshapes[i].flag_data, &scshapes[i].light);
}
}
static void pie_DrawShadows(void)
{
const float width = pie_GetVideoBufferWidth();
const float height = pie_GetVideoBufferHeight();
pie_SetTexturePage(TEXPAGE_NONE);
glPushMatrix();
pie_SetAlphaTest(false);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glDepthFunc(GL_LESS);
glDepthMask(GL_FALSE);
glEnable(GL_STENCIL_TEST);
// Check if we have the required extensions
if (GLEE_EXT_stencil_two_side
&& GLEE_EXT_stencil_wrap)
{
glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);
glDisable(GL_CULL_FACE);
glStencilMask(~0);
glActiveStencilFaceEXT(GL_BACK);
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR_WRAP_EXT);
glStencilFunc(GL_ALWAYS, 0, ~0);
glActiveStencilFaceEXT(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP_EXT);
glStencilFunc(GL_ALWAYS, 0, ~0);
pie_ShadowDrawLoop();
glDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);
}
else
{
// Setup stencil for back faces.
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
pie_ShadowDrawLoop();
// Setup stencil for front faces.
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
// Draw shadows again
pie_ShadowDrawLoop();
}
glEnable(GL_CULL_FACE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
glStencilMask(~0);
glStencilFunc(GL_LESS, 0, ~0);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glColor4f(0, 0, 0, 0.5);
pie_PerspectiveEnd();
glLoadIdentity();
glDisable(GL_DEPTH_TEST);
glBegin(GL_TRIANGLE_STRIP);
glVertex2f(0, 0);
glVertex2f(width, 0);
glVertex2f(0, height);
glVertex2f(width, height);
glEnd();
pie_PerspectiveBegin();
glDisable(GL_BLEND);
glDisable(GL_STENCIL_TEST);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
glPopMatrix();
nb_scshapes = 0;
}
static void pie_DrawRemainingTransShapes(void)
{
unsigned int i = 0;
glPushMatrix();
for (i = 0; i < nb_tshapes; ++i)
{
glLoadMatrixf(tshapes[i].matrix);
pie_Draw3DShape2(tshapes[i].shape, tshapes[i].frame, tshapes[i].colour,
tshapes[i].specular, tshapes[i].flag, tshapes[i].flag_data);
}
glPopMatrix();
nb_tshapes = 0;
}
void pie_RemainingPasses(void)
{
if(shadows)
{
pie_DrawShadows();
}
pie_DrawRemainingTransShapes();
}
/***************************************************************************
* pie_Drawimage
*
* General purpose blit function
* Will support zbuffering, non_textured, coloured lighting and alpha effects
*
* replaces all ivis blit functions
*
***************************************************************************/
void pie_DrawImage(PIEIMAGE *image, PIERECT *dest)
{
PIELIGHT colour = WZCOL_WHITE;
/* Set transparent color to be 0 red, 0 green, 0 blue, 0 alpha */
polyCount++;
pie_SetTexturePage(image->texPage);
glColor4ubv(colour.vector);
glBegin(GL_TRIANGLE_STRIP);
//set up 4 pie verts
glTexCoord2f(image->tu, image->tv);
glVertex2f(dest->x, dest->y);
glTexCoord2f(image->tu + image->tw, image->tv);
glVertex2f(dest->x + dest->w, dest->y);
glTexCoord2f(image->tu, image->tv + image->th);
glVertex2f(dest->x, dest->y + dest->h);
glTexCoord2f(image->tu + image->tw, image->tv + image->th);
glVertex2f(dest->x + dest->w, dest->y + dest->h);
glEnd();
}
void pie_TerrainInit(int sizex, int sizey)
{
int size = sizex * sizey;
assert(sizex > 0 && sizey > 0);
aColour = realloc(aColour, size * sizeof(GLubyte) * COLOUR_COMPONENTS * VERTICES_PER_TILE);
aTexCoord = realloc(aTexCoord, size * sizeof(GLfloat) * TEXCOORD_COMPONENTS * VERTICES_PER_TILE);
aVertex = realloc(aVertex, size * sizeof(GLfloat) * VERTEX_COMPONENTS * VERTICES_PER_TILE);
rowLength = sizex;
}
void pie_DrawTerrain(int mapx, int mapy)
{
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glColorPointer(COLOUR_COMPONENTS, GL_UNSIGNED_BYTE, 0, aColour);
glTexCoordPointer(TEXCOORD_COMPONENTS, GL_FLOAT, 0, aTexCoord);
glVertexPointer(VERTEX_COMPONENTS, GL_FLOAT, 0, aVertex);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glDrawArrays(GL_TRIANGLES, 0, VERTICES_PER_TRIANGLE * mapx * mapy * 2);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
// index gives us the triangle
void pie_DrawTerrainTriangle(int index, const TERRAIN_VERTEX *aVrts)
{
unsigned int i = 0, j = index * VERTICES_PER_TRIANGLE;
tileCount++;
for ( i = 0; i < 3; i++ )
{
aColour[j * COLOUR_COMPONENTS + 0] = aVrts[i].light.byte.r;
aColour[j * COLOUR_COMPONENTS + 1] = aVrts[i].light.byte.g;
aColour[j * COLOUR_COMPONENTS + 2] = aVrts[i].light.byte.b;
aColour[j * COLOUR_COMPONENTS + 3] = aVrts[i].light.byte.a;
aTexCoord[j * TEXCOORD_COMPONENTS + 0] = aVrts[i].u;
aTexCoord[j * TEXCOORD_COMPONENTS + 1] = aVrts[i].v;
aVertex[j * VERTEX_COMPONENTS + 0] = aVrts[i].pos.x;
aVertex[j * VERTEX_COMPONENTS + 1] = aVrts[i].pos.y;
aVertex[j * VERTEX_COMPONENTS + 2] = aVrts[i].pos.z;
j++;
}
}
void pie_DrawWaterTriangle(const TERRAIN_VERTEX *aVrts)
{
unsigned int i = 0;
/* Since this is only used from within source for the terrain draw - we can backface cull the polygons. */
tileCount++;
glBegin(GL_TRIANGLE_FAN);
for ( i = 0; i < 3; i++ )
{
glColor4ubv(aVrts[i].light.vector);
glTexCoord2f(aVrts[i].u, aVrts[i].v);
glVertex3f( aVrts[i].pos.x, aVrts[i].pos.y, aVrts[i].pos.z );
}
glEnd();
}
void pie_GetResetCounts(unsigned int* pPieCount, unsigned int* pTileCount, unsigned int* pPolyCount, unsigned int* pStateCount)
{
*pPieCount = pieCount;
*pTileCount = tileCount;
*pPolyCount = polyCount;
*pStateCount = pieStateCount;
pieCount = 0;
tileCount = 0;
polyCount = 0;
pieStateCount = 0;
return;
}