2018-07-09 19:22:44 -07:00
|
|
|
const std = @import("../index.zig");
|
|
|
|
const builtin = @import("builtin");
|
|
|
|
const assert = std.debug.assert;
|
|
|
|
const mem = std.mem;
|
|
|
|
const AtomicRmwOp = builtin.AtomicRmwOp;
|
|
|
|
const AtomicOrder = builtin.AtomicOrder;
|
|
|
|
const Loop = std.event.Loop;
|
|
|
|
|
|
|
|
/// Thread-safe async/await lock.
|
|
|
|
/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and
|
|
|
|
/// are resumed when the lock is released, in order.
|
|
|
|
pub const Lock = struct {
|
|
|
|
loop: *Loop,
|
|
|
|
shared_bit: u8, // TODO make this a bool
|
|
|
|
queue: Queue,
|
|
|
|
queue_empty_bit: u8, // TODO make this a bool
|
|
|
|
|
2018-07-11 16:38:01 -07:00
|
|
|
const Queue = std.atomic.Queue(promise);
|
2018-07-09 19:22:44 -07:00
|
|
|
|
|
|
|
pub const Held = struct {
|
|
|
|
lock: *Lock,
|
|
|
|
|
|
|
|
pub fn release(self: Held) void {
|
|
|
|
// Resume the next item from the queue.
|
|
|
|
if (self.lock.queue.get()) |node| {
|
|
|
|
self.lock.loop.onNextTick(node);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// We need to release the lock.
|
|
|
|
_ = @atomicRmw(u8, &self.lock.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
|
|
_ = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
|
|
|
|
|
|
// There might be a queue item. If we know the queue is empty, we can be done,
|
|
|
|
// because the other actor will try to obtain the lock.
|
|
|
|
// But if there's a queue item, we are the actor which must loop and attempt
|
|
|
|
// to grab the lock again.
|
|
|
|
if (@atomicLoad(u8, &self.lock.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
const old_bit = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
|
|
if (old_bit != 0) {
|
|
|
|
// We did not obtain the lock. Great, the queue is someone else's problem.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Resume the next item from the queue.
|
|
|
|
if (self.lock.queue.get()) |node| {
|
|
|
|
self.lock.loop.onNextTick(node);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Release the lock again.
|
|
|
|
_ = @atomicRmw(u8, &self.lock.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
|
|
_ = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
|
|
|
|
|
|
// Find out if we can be done.
|
|
|
|
if (@atomicLoad(u8, &self.lock.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
pub fn init(loop: *Loop) Lock {
|
|
|
|
return Lock{
|
|
|
|
.loop = loop,
|
|
|
|
.shared_bit = 0,
|
|
|
|
.queue = Queue.init(),
|
|
|
|
.queue_empty_bit = 1,
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2018-07-11 12:58:48 -07:00
|
|
|
pub fn initLocked(loop: *Loop) Lock {
|
|
|
|
return Lock{
|
|
|
|
.loop = loop,
|
|
|
|
.shared_bit = 1,
|
|
|
|
.queue = Queue.init(),
|
|
|
|
.queue_empty_bit = 1,
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2018-07-09 19:22:44 -07:00
|
|
|
/// Must be called when not locked. Not thread safe.
|
|
|
|
/// All calls to acquire() and release() must complete before calling deinit().
|
|
|
|
pub fn deinit(self: *Lock) void {
|
|
|
|
assert(self.shared_bit == 0);
|
|
|
|
while (self.queue.get()) |node| cancel node.data;
|
|
|
|
}
|
|
|
|
|
|
|
|
pub async fn acquire(self: *Lock) Held {
|
2018-07-11 12:58:48 -07:00
|
|
|
suspend |handle| {
|
2018-07-09 19:22:44 -07:00
|
|
|
// TODO explicitly put this memory in the coroutine frame #1194
|
|
|
|
var my_tick_node = Loop.NextTickNode{
|
|
|
|
.data = handle,
|
|
|
|
.next = undefined,
|
|
|
|
};
|
|
|
|
|
|
|
|
self.queue.put(&my_tick_node);
|
|
|
|
|
|
|
|
// At this point, we are in the queue, so we might have already been resumed and this coroutine
|
|
|
|
// frame might be destroyed. For the rest of the suspend block we cannot access the coroutine frame.
|
|
|
|
|
|
|
|
// We set this bit so that later we can rely on the fact, that if queue_empty_bit is 1, some actor
|
|
|
|
// will attempt to grab the lock.
|
|
|
|
_ = @atomicRmw(u8, &self.queue_empty_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
const old_bit = @atomicRmw(u8, &self.shared_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
|
|
if (old_bit != 0) {
|
|
|
|
// We did not obtain the lock. Trust that our queue entry will resume us, and allow
|
|
|
|
// suspend to complete.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// We got the lock. However we might have already been resumed from the queue.
|
|
|
|
if (self.queue.get()) |node| {
|
|
|
|
// Whether this node is us or someone else, we tail resume it.
|
|
|
|
resume node.data;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
// We already got resumed, and there are none left in the queue, which means that
|
|
|
|
// we aren't even supposed to hold the lock right now.
|
|
|
|
_ = @atomicRmw(u8, &self.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
|
|
|
|
_ = @atomicRmw(u8, &self.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
|
|
|
|
|
|
|
|
// There might be a queue item. If we know the queue is empty, we can be done,
|
|
|
|
// because the other actor will try to obtain the lock.
|
|
|
|
// But if there's a queue item, we are the actor which must loop and attempt
|
|
|
|
// to grab the lock again.
|
|
|
|
if (@atomicLoad(u8, &self.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
unreachable;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Held{ .lock = self };
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
test "std.event.Lock" {
|
|
|
|
var da = std.heap.DirectAllocator.init();
|
|
|
|
defer da.deinit();
|
|
|
|
|
|
|
|
const allocator = &da.allocator;
|
|
|
|
|
|
|
|
var loop: Loop = undefined;
|
|
|
|
try loop.initMultiThreaded(allocator);
|
|
|
|
defer loop.deinit();
|
|
|
|
|
|
|
|
var lock = Lock.init(&loop);
|
|
|
|
defer lock.deinit();
|
|
|
|
|
|
|
|
const handle = try async<allocator> testLock(&loop, &lock);
|
|
|
|
defer cancel handle;
|
|
|
|
loop.run();
|
|
|
|
|
|
|
|
assert(mem.eql(i32, shared_test_data, [1]i32{3 * @intCast(i32, shared_test_data.len)} ** shared_test_data.len));
|
|
|
|
}
|
|
|
|
|
|
|
|
async fn testLock(loop: *Loop, lock: *Lock) void {
|
|
|
|
// TODO explicitly put next tick node memory in the coroutine frame #1194
|
|
|
|
suspend |p| {
|
|
|
|
resume p;
|
|
|
|
}
|
|
|
|
const handle1 = async lockRunner(lock) catch @panic("out of memory");
|
|
|
|
var tick_node1 = Loop.NextTickNode{
|
|
|
|
.next = undefined,
|
|
|
|
.data = handle1,
|
|
|
|
};
|
|
|
|
loop.onNextTick(&tick_node1);
|
|
|
|
|
|
|
|
const handle2 = async lockRunner(lock) catch @panic("out of memory");
|
|
|
|
var tick_node2 = Loop.NextTickNode{
|
|
|
|
.next = undefined,
|
|
|
|
.data = handle2,
|
|
|
|
};
|
|
|
|
loop.onNextTick(&tick_node2);
|
|
|
|
|
|
|
|
const handle3 = async lockRunner(lock) catch @panic("out of memory");
|
|
|
|
var tick_node3 = Loop.NextTickNode{
|
|
|
|
.next = undefined,
|
|
|
|
.data = handle3,
|
|
|
|
};
|
|
|
|
loop.onNextTick(&tick_node3);
|
|
|
|
|
|
|
|
await handle1;
|
|
|
|
await handle2;
|
|
|
|
await handle3;
|
|
|
|
}
|
|
|
|
|
|
|
|
var shared_test_data = [1]i32{0} ** 10;
|
|
|
|
var shared_test_index: usize = 0;
|
|
|
|
|
|
|
|
async fn lockRunner(lock: *Lock) void {
|
|
|
|
suspend; // resumed by onNextTick
|
|
|
|
|
|
|
|
var i: usize = 0;
|
|
|
|
while (i < shared_test_data.len) : (i += 1) {
|
|
|
|
const lock_promise = async lock.acquire() catch @panic("out of memory");
|
|
|
|
const handle = await lock_promise;
|
|
|
|
defer handle.release();
|
|
|
|
|
|
|
|
shared_test_index = 0;
|
|
|
|
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
|
|
|
|
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|