organize std.event into directories

master
Andrew Kelley 2018-07-09 22:22:44 -04:00
parent ccef60a640
commit b6eb404831
7 changed files with 1277 additions and 1222 deletions

View File

@ -458,6 +458,11 @@ set(ZIG_STD_FILES
"elf.zig"
"empty.zig"
"event.zig"
"event/channel.zig"
"event/lock.zig"
"event/locked.zig"
"event/loop.zig"
"event/tcp.zig"
"fmt/errol/enum3.zig"
"fmt/errol/index.zig"
"fmt/errol/lookup.zig"

File diff suppressed because it is too large Load Diff

254
std/event/channel.zig Normal file
View File

@ -0,0 +1,254 @@
const std = @import("../index.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const AtomicRmwOp = builtin.AtomicRmwOp;
const AtomicOrder = builtin.AtomicOrder;
const Loop = std.event.Loop;
/// many producer, many consumer, thread-safe, lock-free, runtime configurable buffer size
/// when buffer is empty, consumers suspend and are resumed by producers
/// when buffer is full, producers suspend and are resumed by consumers
pub fn Channel(comptime T: type) type {
return struct {
loop: *Loop,
getters: std.atomic.QueueMpsc(GetNode),
putters: std.atomic.QueueMpsc(PutNode),
get_count: usize,
put_count: usize,
dispatch_lock: u8, // TODO make this a bool
need_dispatch: u8, // TODO make this a bool
// simple fixed size ring buffer
buffer_nodes: []T,
buffer_index: usize,
buffer_len: usize,
const SelfChannel = this;
const GetNode = struct {
ptr: *T,
tick_node: *Loop.NextTickNode,
};
const PutNode = struct {
data: T,
tick_node: *Loop.NextTickNode,
};
/// call destroy when done
pub fn create(loop: *Loop, capacity: usize) !*SelfChannel {
const buffer_nodes = try loop.allocator.alloc(T, capacity);
errdefer loop.allocator.free(buffer_nodes);
const self = try loop.allocator.create(SelfChannel{
.loop = loop,
.buffer_len = 0,
.buffer_nodes = buffer_nodes,
.buffer_index = 0,
.dispatch_lock = 0,
.need_dispatch = 0,
.getters = std.atomic.QueueMpsc(GetNode).init(),
.putters = std.atomic.QueueMpsc(PutNode).init(),
.get_count = 0,
.put_count = 0,
});
errdefer loop.allocator.destroy(self);
return self;
}
/// must be called when all calls to put and get have suspended and no more calls occur
pub fn destroy(self: *SelfChannel) void {
while (self.getters.get()) |get_node| {
cancel get_node.data.tick_node.data;
}
while (self.putters.get()) |put_node| {
cancel put_node.data.tick_node.data;
}
self.loop.allocator.free(self.buffer_nodes);
self.loop.allocator.destroy(self);
}
/// puts a data item in the channel. The promise completes when the value has been added to the
/// buffer, or in the case of a zero size buffer, when the item has been retrieved by a getter.
pub async fn put(self: *SelfChannel, data: T) void {
// TODO should be able to group memory allocation failure before first suspend point
// so that the async invocation catches it
var dispatch_tick_node_ptr: *Loop.NextTickNode = undefined;
_ = async self.dispatch(&dispatch_tick_node_ptr) catch unreachable;
suspend |handle| {
var my_tick_node = Loop.NextTickNode{
.next = undefined,
.data = handle,
};
var queue_node = std.atomic.QueueMpsc(PutNode).Node{
.data = PutNode{
.tick_node = &my_tick_node,
.data = data,
},
.next = undefined,
};
self.putters.put(&queue_node);
_ = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
self.loop.onNextTick(dispatch_tick_node_ptr);
}
}
/// await this function to get an item from the channel. If the buffer is empty, the promise will
/// complete when the next item is put in the channel.
pub async fn get(self: *SelfChannel) T {
// TODO should be able to group memory allocation failure before first suspend point
// so that the async invocation catches it
var dispatch_tick_node_ptr: *Loop.NextTickNode = undefined;
_ = async self.dispatch(&dispatch_tick_node_ptr) catch unreachable;
// TODO integrate this function with named return values
// so we can get rid of this extra result copy
var result: T = undefined;
suspend |handle| {
var my_tick_node = Loop.NextTickNode{
.next = undefined,
.data = handle,
};
var queue_node = std.atomic.QueueMpsc(GetNode).Node{
.data = GetNode{
.ptr = &result,
.tick_node = &my_tick_node,
},
.next = undefined,
};
self.getters.put(&queue_node);
_ = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
self.loop.onNextTick(dispatch_tick_node_ptr);
}
return result;
}
async fn dispatch(self: *SelfChannel, tick_node_ptr: **Loop.NextTickNode) void {
// resumed by onNextTick
suspend |handle| {
var tick_node = Loop.NextTickNode{
.data = handle,
.next = undefined,
};
tick_node_ptr.* = &tick_node;
}
// set the "need dispatch" flag
_ = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
lock: while (true) {
// set the lock flag
const prev_lock = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
if (prev_lock != 0) return;
// clear the need_dispatch flag since we're about to do it
_ = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
while (true) {
one_dispatch: {
// later we correct these extra subtractions
var get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
var put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
// transfer self.buffer to self.getters
while (self.buffer_len != 0) {
if (get_count == 0) break :one_dispatch;
const get_node = &self.getters.get().?.data;
get_node.ptr.* = self.buffer_nodes[self.buffer_index -% self.buffer_len];
self.loop.onNextTick(get_node.tick_node);
self.buffer_len -= 1;
get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
// direct transfer self.putters to self.getters
while (get_count != 0 and put_count != 0) {
const get_node = &self.getters.get().?.data;
const put_node = &self.putters.get().?.data;
get_node.ptr.* = put_node.data;
self.loop.onNextTick(get_node.tick_node);
self.loop.onNextTick(put_node.tick_node);
get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
// transfer self.putters to self.buffer
while (self.buffer_len != self.buffer_nodes.len and put_count != 0) {
const put_node = &self.putters.get().?.data;
self.buffer_nodes[self.buffer_index] = put_node.data;
self.loop.onNextTick(put_node.tick_node);
self.buffer_index +%= 1;
self.buffer_len += 1;
put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
}
// undo the extra subtractions
_ = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
_ = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
// clear need-dispatch flag
const need_dispatch = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
if (need_dispatch != 0) continue;
const my_lock = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
assert(my_lock != 0);
// we have to check again now that we unlocked
if (@atomicLoad(u8, &self.need_dispatch, AtomicOrder.SeqCst) != 0) continue :lock;
return;
}
}
}
};
}
test "std.event.Channel" {
var da = std.heap.DirectAllocator.init();
defer da.deinit();
const allocator = &da.allocator;
var loop: Loop = undefined;
// TODO make a multi threaded test
try loop.initSingleThreaded(allocator);
defer loop.deinit();
const channel = try Channel(i32).create(&loop, 0);
defer channel.destroy();
const handle = try async<allocator> testChannelGetter(&loop, channel);
defer cancel handle;
const putter = try async<allocator> testChannelPutter(channel);
defer cancel putter;
loop.run();
}
async fn testChannelGetter(loop: *Loop, channel: *Channel(i32)) void {
errdefer @panic("test failed");
const value1_promise = try async channel.get();
const value1 = await value1_promise;
assert(value1 == 1234);
const value2_promise = try async channel.get();
const value2 = await value2_promise;
assert(value2 == 4567);
}
async fn testChannelPutter(channel: *Channel(i32)) void {
await (async channel.put(1234) catch @panic("out of memory"));
await (async channel.put(4567) catch @panic("out of memory"));
}

204
std/event/lock.zig Normal file
View File

@ -0,0 +1,204 @@
const std = @import("../index.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const mem = std.mem;
const AtomicRmwOp = builtin.AtomicRmwOp;
const AtomicOrder = builtin.AtomicOrder;
const Loop = std.event.Loop;
/// Thread-safe async/await lock.
/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
pub const Lock = struct {
loop: *Loop,
shared_bit: u8, // TODO make this a bool
queue: Queue,
queue_empty_bit: u8, // TODO make this a bool
const Queue = std.atomic.QueueMpsc(promise);
pub const Held = struct {
lock: *Lock,
pub fn release(self: Held) void {
// Resume the next item from the queue.
if (self.lock.queue.get()) |node| {
self.lock.loop.onNextTick(node);
return;
}
// We need to release the lock.
_ = @atomicRmw(u8, &self.lock.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
_ = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
// There might be a queue item. If we know the queue is empty, we can be done,
// because the other actor will try to obtain the lock.
// But if there's a queue item, we are the actor which must loop and attempt
// to grab the lock again.
if (@atomicLoad(u8, &self.lock.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
return;
}
while (true) {
const old_bit = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
if (old_bit != 0) {
// We did not obtain the lock. Great, the queue is someone else's problem.
return;
}
// Resume the next item from the queue.
if (self.lock.queue.get()) |node| {
self.lock.loop.onNextTick(node);
return;
}
// Release the lock again.
_ = @atomicRmw(u8, &self.lock.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
_ = @atomicRmw(u8, &self.lock.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
// Find out if we can be done.
if (@atomicLoad(u8, &self.lock.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
return;
}
}
}
};
pub fn init(loop: *Loop) Lock {
return Lock{
.loop = loop,
.shared_bit = 0,
.queue = Queue.init(),
.queue_empty_bit = 1,
};
}
/// Must be called when not locked. Not thread safe.
/// All calls to acquire() and release() must complete before calling deinit().
pub fn deinit(self: *Lock) void {
assert(self.shared_bit == 0);
while (self.queue.get()) |node| cancel node.data;
}
pub async fn acquire(self: *Lock) Held {
s: suspend |handle| {
// TODO explicitly put this memory in the coroutine frame #1194
var my_tick_node = Loop.NextTickNode{
.data = handle,
.next = undefined,
};
self.queue.put(&my_tick_node);
// At this point, we are in the queue, so we might have already been resumed and this coroutine
// frame might be destroyed. For the rest of the suspend block we cannot access the coroutine frame.
// We set this bit so that later we can rely on the fact, that if queue_empty_bit is 1, some actor
// will attempt to grab the lock.
_ = @atomicRmw(u8, &self.queue_empty_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
while (true) {
const old_bit = @atomicRmw(u8, &self.shared_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
if (old_bit != 0) {
// We did not obtain the lock. Trust that our queue entry will resume us, and allow
// suspend to complete.
break;
}
// We got the lock. However we might have already been resumed from the queue.
if (self.queue.get()) |node| {
// Whether this node is us or someone else, we tail resume it.
resume node.data;
break;
} else {
// We already got resumed, and there are none left in the queue, which means that
// we aren't even supposed to hold the lock right now.
_ = @atomicRmw(u8, &self.queue_empty_bit, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
_ = @atomicRmw(u8, &self.shared_bit, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
// There might be a queue item. If we know the queue is empty, we can be done,
// because the other actor will try to obtain the lock.
// But if there's a queue item, we are the actor which must loop and attempt
// to grab the lock again.
if (@atomicLoad(u8, &self.queue_empty_bit, AtomicOrder.SeqCst) == 1) {
break;
} else {
continue;
}
}
unreachable;
}
}
return Held{ .lock = self };
}
};
test "std.event.Lock" {
var da = std.heap.DirectAllocator.init();
defer da.deinit();
const allocator = &da.allocator;
var loop: Loop = undefined;
try loop.initMultiThreaded(allocator);
defer loop.deinit();
var lock = Lock.init(&loop);
defer lock.deinit();
const handle = try async<allocator> testLock(&loop, &lock);
defer cancel handle;
loop.run();
assert(mem.eql(i32, shared_test_data, [1]i32{3 * @intCast(i32, shared_test_data.len)} ** shared_test_data.len));
}
async fn testLock(loop: *Loop, lock: *Lock) void {
// TODO explicitly put next tick node memory in the coroutine frame #1194
suspend |p| {
resume p;
}
const handle1 = async lockRunner(lock) catch @panic("out of memory");
var tick_node1 = Loop.NextTickNode{
.next = undefined,
.data = handle1,
};
loop.onNextTick(&tick_node1);
const handle2 = async lockRunner(lock) catch @panic("out of memory");
var tick_node2 = Loop.NextTickNode{
.next = undefined,
.data = handle2,
};
loop.onNextTick(&tick_node2);
const handle3 = async lockRunner(lock) catch @panic("out of memory");
var tick_node3 = Loop.NextTickNode{
.next = undefined,
.data = handle3,
};
loop.onNextTick(&tick_node3);
await handle1;
await handle2;
await handle3;
}
var shared_test_data = [1]i32{0} ** 10;
var shared_test_index: usize = 0;
async fn lockRunner(lock: *Lock) void {
suspend; // resumed by onNextTick
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
const lock_promise = async lock.acquire() catch @panic("out of memory");
const handle = await lock_promise;
defer handle.release();
shared_test_index = 0;
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
}
}
}

42
std/event/locked.zig Normal file
View File

@ -0,0 +1,42 @@
const std = @import("../index.zig");
const Lock = std.event.Lock;
/// Thread-safe async/await lock that protects one piece of data.
/// Does not make any syscalls - coroutines which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
pub fn Locked(comptime T: type) type {
return struct {
lock: Lock,
private_data: T,
const Self = this;
pub const HeldLock = struct {
value: *T,
held: Lock.Held,
pub fn release(self: HeldLock) void {
self.held.release();
}
};
pub fn init(loop: *Loop, data: T) Self {
return Self{
.lock = Lock.init(loop),
.private_data = data,
};
}
pub fn deinit(self: *Self) void {
self.lock.deinit();
}
pub async fn acquire(self: *Self) HeldLock {
return HeldLock{
// TODO guaranteed allocation elision
.held = await (async self.lock.acquire() catch unreachable),
.value = &self.private_data,
};
}
};
}

577
std/event/loop.zig Normal file
View File

@ -0,0 +1,577 @@
const std = @import("../index.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const mem = std.mem;
const posix = std.os.posix;
const windows = std.os.windows;
const AtomicRmwOp = builtin.AtomicRmwOp;
const AtomicOrder = builtin.AtomicOrder;
pub const Loop = struct {
allocator: *mem.Allocator,
next_tick_queue: std.atomic.QueueMpsc(promise),
os_data: OsData,
final_resume_node: ResumeNode,
dispatch_lock: u8, // TODO make this a bool
pending_event_count: usize,
extra_threads: []*std.os.Thread,
// pre-allocated eventfds. all permanently active.
// this is how we send promises to be resumed on other threads.
available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd),
eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node,
pub const NextTickNode = std.atomic.QueueMpsc(promise).Node;
pub const ResumeNode = struct {
id: Id,
handle: promise,
pub const Id = enum {
Basic,
Stop,
EventFd,
};
pub const EventFd = switch (builtin.os) {
builtin.Os.macosx => MacOsEventFd,
builtin.Os.linux => struct {
base: ResumeNode,
epoll_op: u32,
eventfd: i32,
},
builtin.Os.windows => struct {
base: ResumeNode,
completion_key: usize,
},
else => @compileError("unsupported OS"),
};
const MacOsEventFd = struct {
base: ResumeNode,
kevent: posix.Kevent,
};
};
/// After initialization, call run().
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
fn initSingleThreaded(self: *Loop, allocator: *mem.Allocator) !void {
return self.initInternal(allocator, 1);
}
/// The allocator must be thread-safe because we use it for multiplexing
/// coroutines onto kernel threads.
/// After initialization, call run().
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
fn initMultiThreaded(self: *Loop, allocator: *mem.Allocator) !void {
const core_count = try std.os.cpuCount(allocator);
return self.initInternal(allocator, core_count);
}
/// Thread count is the total thread count. The thread pool size will be
/// max(thread_count - 1, 0)
fn initInternal(self: *Loop, allocator: *mem.Allocator, thread_count: usize) !void {
self.* = Loop{
.pending_event_count = 0,
.allocator = allocator,
.os_data = undefined,
.next_tick_queue = std.atomic.QueueMpsc(promise).init(),
.dispatch_lock = 1, // start locked so threads go directly into epoll wait
.extra_threads = undefined,
.available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(),
.eventfd_resume_nodes = undefined,
.final_resume_node = ResumeNode{
.id = ResumeNode.Id.Stop,
.handle = undefined,
},
};
const extra_thread_count = thread_count - 1;
self.eventfd_resume_nodes = try self.allocator.alloc(
std.atomic.Stack(ResumeNode.EventFd).Node,
extra_thread_count,
);
errdefer self.allocator.free(self.eventfd_resume_nodes);
self.extra_threads = try self.allocator.alloc(*std.os.Thread, extra_thread_count);
errdefer self.allocator.free(self.extra_threads);
try self.initOsData(extra_thread_count);
errdefer self.deinitOsData();
}
/// must call stop before deinit
pub fn deinit(self: *Loop) void {
self.deinitOsData();
self.allocator.free(self.extra_threads);
}
const InitOsDataError = std.os.LinuxEpollCreateError || mem.Allocator.Error || std.os.LinuxEventFdError ||
std.os.SpawnThreadError || std.os.LinuxEpollCtlError || std.os.BsdKEventError ||
std.os.WindowsCreateIoCompletionPortError;
const wakeup_bytes = []u8{0x1} ** 8;
fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void {
switch (builtin.os) {
builtin.Os.linux => {
errdefer {
while (self.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd);
}
for (self.eventfd_resume_nodes) |*eventfd_node| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = ResumeNode.Id.EventFd,
.handle = undefined,
},
.eventfd = try std.os.linuxEventFd(1, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK),
.epoll_op = posix.EPOLL_CTL_ADD,
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
}
self.os_data.epollfd = try std.os.linuxEpollCreate(posix.EPOLL_CLOEXEC);
errdefer std.os.close(self.os_data.epollfd);
self.os_data.final_eventfd = try std.os.linuxEventFd(0, posix.EFD_CLOEXEC | posix.EFD_NONBLOCK);
errdefer std.os.close(self.os_data.final_eventfd);
self.os_data.final_eventfd_event = posix.epoll_event{
.events = posix.EPOLLIN,
.data = posix.epoll_data{ .ptr = @ptrToInt(&self.final_resume_node) },
};
try std.os.linuxEpollCtl(
self.os_data.epollfd,
posix.EPOLL_CTL_ADD,
self.os_data.final_eventfd,
&self.os_data.final_eventfd_event,
);
var extra_thread_index: usize = 0;
errdefer {
// writing 8 bytes to an eventfd cannot fail
std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].wait();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun);
}
},
builtin.Os.macosx => {
self.os_data.kqfd = try std.os.bsdKQueue();
errdefer std.os.close(self.os_data.kqfd);
self.os_data.kevents = try self.allocator.alloc(posix.Kevent, extra_thread_count);
errdefer self.allocator.free(self.os_data.kevents);
const eventlist = ([*]posix.Kevent)(undefined)[0..0];
for (self.eventfd_resume_nodes) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = ResumeNode.Id.EventFd,
.handle = undefined,
},
// this one is for sending events
.kevent = posix.Kevent{
.ident = i,
.filter = posix.EVFILT_USER,
.flags = posix.EV_CLEAR | posix.EV_ADD | posix.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&eventfd_node.data.base),
},
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
const kevent_array = (*[1]posix.Kevent)(&eventfd_node.data.kevent);
_ = try std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null);
eventfd_node.data.kevent.flags = posix.EV_CLEAR | posix.EV_ENABLE;
eventfd_node.data.kevent.fflags = posix.NOTE_TRIGGER;
// this one is for waiting for events
self.os_data.kevents[i] = posix.Kevent{
.ident = i,
.filter = posix.EVFILT_USER,
.flags = 0,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&eventfd_node.data.base),
};
}
// Pre-add so that we cannot get error.SystemResources
// later when we try to activate it.
self.os_data.final_kevent = posix.Kevent{
.ident = extra_thread_count,
.filter = posix.EVFILT_USER,
.flags = posix.EV_ADD | posix.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&self.final_resume_node),
};
const kevent_array = (*[1]posix.Kevent)(&self.os_data.final_kevent);
_ = try std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null);
self.os_data.final_kevent.flags = posix.EV_ENABLE;
self.os_data.final_kevent.fflags = posix.NOTE_TRIGGER;
var extra_thread_index: usize = 0;
errdefer {
_ = std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].wait();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun);
}
},
builtin.Os.windows => {
self.os_data.extra_thread_count = extra_thread_count;
self.os_data.io_port = try std.os.windowsCreateIoCompletionPort(
windows.INVALID_HANDLE_VALUE,
null,
undefined,
undefined,
);
errdefer std.os.close(self.os_data.io_port);
for (self.eventfd_resume_nodes) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = ResumeNode.Id.EventFd,
.handle = undefined,
},
// this one is for sending events
.completion_key = @ptrToInt(&eventfd_node.data.base),
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
}
var extra_thread_index: usize = 0;
errdefer {
var i: usize = 0;
while (i < extra_thread_index) : (i += 1) {
while (true) {
const overlapped = @intToPtr(?*windows.OVERLAPPED, 0x1);
std.os.windowsPostQueuedCompletionStatus(self.os_data.io_port, undefined, @ptrToInt(&self.final_resume_node), overlapped) catch continue;
break;
}
}
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].wait();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun);
}
},
else => {},
}
}
fn deinitOsData(self: *Loop) void {
switch (builtin.os) {
builtin.Os.linux => {
std.os.close(self.os_data.final_eventfd);
while (self.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd);
std.os.close(self.os_data.epollfd);
self.allocator.free(self.eventfd_resume_nodes);
},
builtin.Os.macosx => {
self.allocator.free(self.os_data.kevents);
std.os.close(self.os_data.kqfd);
},
builtin.Os.windows => {
std.os.close(self.os_data.io_port);
},
else => {},
}
}
/// resume_node must live longer than the promise that it holds a reference to.
pub fn addFd(self: *Loop, fd: i32, resume_node: *ResumeNode) !void {
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
errdefer {
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
try self.modFd(
fd,
posix.EPOLL_CTL_ADD,
std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET,
resume_node,
);
}
pub fn modFd(self: *Loop, fd: i32, op: u32, events: u32, resume_node: *ResumeNode) !void {
var ev = std.os.linux.epoll_event{
.events = events,
.data = std.os.linux.epoll_data{ .ptr = @ptrToInt(resume_node) },
};
try std.os.linuxEpollCtl(self.os_data.epollfd, op, fd, &ev);
}
pub fn removeFd(self: *Loop, fd: i32) void {
self.removeFdNoCounter(fd);
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
fn removeFdNoCounter(self: *Loop, fd: i32) void {
std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_DEL, fd, undefined) catch {};
}
pub async fn waitFd(self: *Loop, fd: i32) !void {
defer self.removeFd(fd);
suspend |p| {
// TODO explicitly put this memory in the coroutine frame #1194
var resume_node = ResumeNode{
.id = ResumeNode.Id.Basic,
.handle = p,
};
try self.addFd(fd, &resume_node);
}
}
/// Bring your own linked list node. This means it can't fail.
pub fn onNextTick(self: *Loop, node: *NextTickNode) void {
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
self.next_tick_queue.put(node);
}
pub fn run(self: *Loop) void {
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
self.workerRun();
for (self.extra_threads) |extra_thread| {
extra_thread.wait();
}
}
fn workerRun(self: *Loop) void {
start_over: while (true) {
if (@atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst) == 0) {
while (self.next_tick_queue.get()) |next_tick_node| {
const handle = next_tick_node.data;
if (self.next_tick_queue.isEmpty()) {
// last node, just resume it
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
resume handle;
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
continue :start_over;
}
// non-last node, stick it in the epoll/kqueue set so that
// other threads can get to it
if (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| {
const eventfd_node = &resume_stack_node.data;
eventfd_node.base.handle = handle;
switch (builtin.os) {
builtin.Os.macosx => {
const kevent_array = (*[1]posix.Kevent)(&eventfd_node.kevent);
const eventlist = ([*]posix.Kevent)(undefined)[0..0];
_ = std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null) catch {
// fine, we didn't need it anyway
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
self.available_eventfd_resume_nodes.push(resume_stack_node);
resume handle;
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
continue :start_over;
};
},
builtin.Os.linux => {
// the pending count is already accounted for
const epoll_events = posix.EPOLLONESHOT | std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET;
self.modFd(eventfd_node.eventfd, eventfd_node.epoll_op, epoll_events, &eventfd_node.base) catch {
// fine, we didn't need it anyway
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
self.available_eventfd_resume_nodes.push(resume_stack_node);
resume handle;
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
continue :start_over;
};
},
builtin.Os.windows => {
// this value is never dereferenced but we need it to be non-null so that
// the consumer code can decide whether to read the completion key.
// it has to do this for normal I/O, so we match that behavior here.
const overlapped = @intToPtr(?*windows.OVERLAPPED, 0x1);
std.os.windowsPostQueuedCompletionStatus(self.os_data.io_port, undefined, eventfd_node.completion_key, overlapped) catch {
// fine, we didn't need it anyway
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
self.available_eventfd_resume_nodes.push(resume_stack_node);
resume handle;
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
continue :start_over;
};
},
else => @compileError("unsupported OS"),
}
} else {
// threads are too busy, can't add another eventfd to wake one up
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
resume handle;
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
continue :start_over;
}
}
const pending_event_count = @atomicLoad(usize, &self.pending_event_count, AtomicOrder.SeqCst);
if (pending_event_count == 0) {
// cause all the threads to stop
switch (builtin.os) {
builtin.Os.linux => {
// writing 8 bytes to an eventfd cannot fail
std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
return;
},
builtin.Os.macosx => {
const final_kevent = (*[1]posix.Kevent)(&self.os_data.final_kevent);
const eventlist = ([*]posix.Kevent)(undefined)[0..0];
// cannot fail because we already added it and this just enables it
_ = std.os.bsdKEvent(self.os_data.kqfd, final_kevent, eventlist, null) catch unreachable;
return;
},
builtin.Os.windows => {
var i: usize = 0;
while (i < self.os_data.extra_thread_count) : (i += 1) {
while (true) {
const overlapped = @intToPtr(?*windows.OVERLAPPED, 0x1);
std.os.windowsPostQueuedCompletionStatus(self.os_data.io_port, undefined, @ptrToInt(&self.final_resume_node), overlapped) catch continue;
break;
}
}
return;
},
else => @compileError("unsupported OS"),
}
}
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
}
switch (builtin.os) {
builtin.Os.linux => {
// only process 1 event so we don't steal from other threads
var events: [1]std.os.linux.epoll_event = undefined;
const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1);
for (events[0..count]) |ev| {
const resume_node = @intToPtr(*ResumeNode, ev.data.ptr);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
ResumeNode.Id.Basic => {},
ResumeNode.Id.Stop => return,
ResumeNode.Id.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
event_fd_node.epoll_op = posix.EPOLL_CTL_MOD;
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == ResumeNode.Id.EventFd) {
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
}
},
builtin.Os.macosx => {
var eventlist: [1]posix.Kevent = undefined;
const count = std.os.bsdKEvent(self.os_data.kqfd, self.os_data.kevents, eventlist[0..], null) catch unreachable;
for (eventlist[0..count]) |ev| {
const resume_node = @intToPtr(*ResumeNode, ev.udata);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
ResumeNode.Id.Basic => {},
ResumeNode.Id.Stop => return,
ResumeNode.Id.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == ResumeNode.Id.EventFd) {
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
}
},
builtin.Os.windows => {
var completion_key: usize = undefined;
while (true) {
var nbytes: windows.DWORD = undefined;
var overlapped: ?*windows.OVERLAPPED = undefined;
switch (std.os.windowsGetQueuedCompletionStatus(self.os_data.io_port, &nbytes, &completion_key, &overlapped, windows.INFINITE)) {
std.os.WindowsWaitResult.Aborted => return,
std.os.WindowsWaitResult.Normal => {},
}
if (overlapped != null) break;
}
const resume_node = @intToPtr(*ResumeNode, completion_key);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
ResumeNode.Id.Basic => {},
ResumeNode.Id.Stop => return,
ResumeNode.Id.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == ResumeNode.Id.EventFd) {
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
},
else => @compileError("unsupported OS"),
}
}
}
const OsData = switch (builtin.os) {
builtin.Os.linux => struct {
epollfd: i32,
final_eventfd: i32,
final_eventfd_event: std.os.linux.epoll_event,
},
builtin.Os.macosx => MacOsData,
builtin.Os.windows => struct {
io_port: windows.HANDLE,
extra_thread_count: usize,
},
else => struct {},
};
const MacOsData = struct {
kqfd: i32,
final_kevent: posix.Kevent,
kevents: []posix.Kevent,
};
};
test "std.event.Loop - basic" {
//var da = std.heap.DirectAllocator.init();
//defer da.deinit();
//const allocator = &da.allocator;
//var loop: Loop = undefined;
//try loop.initMultiThreaded(allocator);
//defer loop.deinit();
//loop.run();
}

183
std/event/tcp.zig Normal file
View File

@ -0,0 +1,183 @@
const std = @import("../index.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const event = std.event;
const mem = std.mem;
const posix = std.os.posix;
const windows = std.os.windows;
const Loop = std.event.Loop;
pub const Server = struct {
handleRequestFn: async<*mem.Allocator> fn (*Server, *const std.net.Address, *const std.os.File) void,
loop: *Loop,
sockfd: ?i32,
accept_coro: ?promise,
listen_address: std.net.Address,
waiting_for_emfile_node: PromiseNode,
listen_resume_node: event.Loop.ResumeNode,
const PromiseNode = std.LinkedList(promise).Node;
pub fn init(loop: *Loop) Server {
// TODO can't initialize handler coroutine here because we need well defined copy elision
return Server{
.loop = loop,
.sockfd = null,
.accept_coro = null,
.handleRequestFn = undefined,
.waiting_for_emfile_node = undefined,
.listen_address = undefined,
.listen_resume_node = event.Loop.ResumeNode{
.id = event.Loop.ResumeNode.Id.Basic,
.handle = undefined,
},
};
}
pub fn listen(
self: *Server,
address: *const std.net.Address,
handleRequestFn: async<*mem.Allocator> fn (*Server, *const std.net.Address, *const std.os.File) void,
) !void {
self.handleRequestFn = handleRequestFn;
const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp);
errdefer std.os.close(sockfd);
self.sockfd = sockfd;
try std.os.posixBind(sockfd, &address.os_addr);
try std.os.posixListen(sockfd, posix.SOMAXCONN);
self.listen_address = std.net.Address.initPosix(try std.os.posixGetSockName(sockfd));
self.accept_coro = try async<self.loop.allocator> Server.handler(self);
errdefer cancel self.accept_coro.?;
self.listen_resume_node.handle = self.accept_coro.?;
try self.loop.addFd(sockfd, &self.listen_resume_node);
errdefer self.loop.removeFd(sockfd);
}
/// Stop listening
pub fn close(self: *Server) void {
self.loop.removeFd(self.sockfd.?);
std.os.close(self.sockfd.?);
}
pub fn deinit(self: *Server) void {
if (self.accept_coro) |accept_coro| cancel accept_coro;
if (self.sockfd) |sockfd| std.os.close(sockfd);
}
pub async fn handler(self: *Server) void {
while (true) {
var accepted_addr: std.net.Address = undefined;
if (std.os.posixAccept(self.sockfd.?, &accepted_addr.os_addr, posix.SOCK_NONBLOCK | posix.SOCK_CLOEXEC)) |accepted_fd| {
var socket = std.os.File.openHandle(accepted_fd);
_ = async<self.loop.allocator> self.handleRequestFn(self, accepted_addr, socket) catch |err| switch (err) {
error.OutOfMemory => {
socket.close();
continue;
},
};
} else |err| switch (err) {
error.WouldBlock => {
suspend; // we will get resumed by epoll_wait in the event loop
continue;
},
error.ProcessFdQuotaExceeded => {
errdefer std.os.emfile_promise_queue.remove(&self.waiting_for_emfile_node);
suspend |p| {
self.waiting_for_emfile_node = PromiseNode.init(p);
std.os.emfile_promise_queue.append(&self.waiting_for_emfile_node);
}
continue;
},
error.ConnectionAborted, error.FileDescriptorClosed => continue,
error.PageFault => unreachable,
error.InvalidSyscall => unreachable,
error.FileDescriptorNotASocket => unreachable,
error.OperationNotSupported => unreachable,
error.SystemFdQuotaExceeded, error.SystemResources, error.ProtocolFailure, error.BlockedByFirewall, error.Unexpected => {
@panic("TODO handle this error");
},
}
}
}
};
pub async fn connect(loop: *Loop, _address: *const std.net.Address) !std.os.File {
var address = _address.*; // TODO https://github.com/ziglang/zig/issues/733
const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp);
errdefer std.os.close(sockfd);
try std.os.posixConnectAsync(sockfd, &address.os_addr);
try await try async loop.waitFd(sockfd);
try std.os.posixGetSockOptConnectError(sockfd);
return std.os.File.openHandle(sockfd);
}
test "listen on a port, send bytes, receive bytes" {
if (builtin.os != builtin.Os.linux) {
// TODO build abstractions for other operating systems
return;
}
const MyServer = struct {
tcp_server: Server,
const Self = this;
async<*mem.Allocator> fn handler(tcp_server: *Server, _addr: *const std.net.Address, _socket: *const std.os.File) void {
const self = @fieldParentPtr(Self, "tcp_server", tcp_server);
var socket = _socket.*; // TODO https://github.com/ziglang/zig/issues/733
defer socket.close();
// TODO guarantee elision of this allocation
const next_handler = async errorableHandler(self, _addr, socket) catch unreachable;
(await next_handler) catch |err| {
std.debug.panic("unable to handle connection: {}\n", err);
};
suspend |p| {
cancel p;
}
}
async fn errorableHandler(self: *Self, _addr: *const std.net.Address, _socket: *const std.os.File) !void {
const addr = _addr.*; // TODO https://github.com/ziglang/zig/issues/733
var socket = _socket.*; // TODO https://github.com/ziglang/zig/issues/733
var adapter = std.io.FileOutStream.init(&socket);
var stream = &adapter.stream;
try stream.print("hello from server\n");
}
};
const ip4addr = std.net.parseIp4("127.0.0.1") catch unreachable;
const addr = std.net.Address.initIp4(ip4addr, 0);
var loop: Loop = undefined;
try loop.initSingleThreaded(std.debug.global_allocator);
var server = MyServer{ .tcp_server = Server.init(&loop) };
defer server.tcp_server.deinit();
try server.tcp_server.listen(addr, MyServer.handler);
const p = try async<std.debug.global_allocator> doAsyncTest(&loop, server.tcp_server.listen_address, &server.tcp_server);
defer cancel p;
loop.run();
}
async fn doAsyncTest(loop: *Loop, address: *const std.net.Address, server: *Server) void {
errdefer @panic("test failure");
var socket_file = try await try async connect(loop, address);
defer socket_file.close();
var buf: [512]u8 = undefined;
const amt_read = try socket_file.read(buf[0..]);
const msg = buf[0..amt_read];
assert(mem.eql(u8, msg, "hello from server\n"));
server.close();
}