2016-07-24 20:57:59 -03:00

328 lines
8.3 KiB
Lua

--- A 2 component vector.
-- @module vec2
local atan2 = math.atan2
local sqrt = math.sqrt
local cos = math.cos
local sin = math.sin
local vec2 = {}
local vec2_mt = {}
-- Private constructor.
local function new(x, y)
local v = {}
v.x, v.y = x, y
return setmetatable(v, vec2_mt)
end
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
local status, ffi
if type(jit) == "table" and jit.status() then
status, ffi = pcall(require, "ffi")
if status then
ffi.cdef "typedef struct { double x, y;} cpml_vec2;"
new = ffi.typeof("cpml_vec2")
end
end
--- Constants
-- @table vec2
-- @field unit_x X axis of rotation
-- @field unit_y Y axis of rotation
-- @field zero Empty vector
vec2.unit_x = new(1, 0)
vec2.unit_y = new(0, 1)
vec2.zero = new(0, 0)
--- The public constructor.
-- @param x Can be of three types: </br>
-- number X component
-- table {x, y} or {x = x, y = y}
-- scalar to fill the vector eg. {x, x}
-- @tparam number y Y component
-- @treturn vec2 out
function vec2.new(x, y)
-- number, number
if x and y then
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
assert(type(y) == "number", "new: Wrong argument type for y (<number> expected)")
return new(x, y)
-- {x, y} or {x=x, y=y}
elseif type(x) == "table" then
local x, y = x.x or x[1], x.y or x[2]
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
assert(type(y) == "number", "new: Wrong argument type for y (<number> expected)")
return new(x, y)
-- number
elseif type(x) == "number" then
return new(x, x)
else
return new(0, 0)
end
end
--- Convert point from polar to cartesian.
-- @tparam number radius Radius of the point
-- @tparam number theta Angle of the point (in radians)
-- @treturn vec2 out
function vec2.from_cartesian(radius, theta)
return new(radius * cos(theta), radius * sin(theta))
end
--- Clone a vector.
-- @tparam vec2 a Vector to be cloned
-- @treturn vec2 out
function vec2.clone(a)
return new(a.x, a.y)
end
--- Add two vectors.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2 out
function vec2.add(out, a, b)
out.x = a.x + b.x
out.y = a.y + b.y
return out
end
--- Subtract one vector from another.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2 out
function vec2.sub(out, a, b)
out.x = a.x - b.x
out.y = a.y - b.y
return out
end
--- Multiply a vector by a scalar.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2 out
function vec2.mul(out, a, b)
out.x = a.x * b
out.y = a.y * b
return out
end
--- Divide one vector by a scalar.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2 out
function vec2.div(out, a, b)
out.x = a.x / b
out.y = a.y / b
return out
end
--- Get the normal of a vector.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to normalize
-- @treturn vec2 out
function vec2.normalize(out, a)
local l = a:len()
out.x = a.x / l
out.y = a.y / l
return out
end
--- Trim a vector to a given length.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to be trimmed
-- @tparam number len Length to trim the vector to
-- @treturn vec2 out
function vec2.trim(out, a, len)
return out
:normalize(a)
:mul(out, math.min(a:len(), len))
end
--- Get the cross product of two vectors.
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number magnitude
function vec2.cross(a, b)
return a.x * b.y - a.y * b.x
end
--- Get the dot product of two vectors.
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number dot
function vec2.dot(a, b)
return a.x * b.x + a.y * b.y
end
--- Get the length of a vector.
-- @tparam vec2 a Vector to get the length of
-- @treturn number len
function vec2.len(a)
return sqrt(a.x * a.x + a.y * a.y)
end
--- Get the squared length of a vector.
-- @tparam vec2 a Vector to get the squared length of
-- @treturn number len
function vec2.len2(a)
return a.x * a.x + a.y * a.y
end
--- Get the distance between two vectors.
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number dist
function vec2.dist(a, b)
local dx = a.x - b.x
local dy = a.y - b.y
return sqrt(dx * dx + dy * dy)
end
--- Get the squared distance between two vectors.
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number dist
function vec2.dist2(a, b)
local dx = a.x - b.x
local dy = a.y - b.y
return dx * dx + dy * dy
end
--- Rotate a vector.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to rotate
-- @tparam number phi Angle to rotate vector by (in radians)
-- @treturn vec2 out
function vec2.rotate(out, a, phi)
local c = cos(phi)
local s = sin(phi)
out.x = c * a.x - s * a.y
out.y = s * a.x + c * a.y
return out
end
--- Get the perpendicular vector of a vector.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to get perpendicular axes from
-- @treturn vec2 out
function vec2.perpendicular(out, a)
out.x = -a.y
out.y = a.x
return out
end
--- Lerp between two vectors.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @tparam number s Step value
-- @treturn vec2 out
function vec2.lerp(out, a, b, s)
return out
:sub(b, a)
:mul(out, s)
:add(out, a)
end
--- Unpack a vector into individual components.
-- @tparam vec2 a Vector to unpack
-- @treturn number x
-- @treturn number y
function vec2.unpack(a)
return a.x, a.y
end
--- Return a boolean showing if a table is or is not a vec2.
-- @tparam vec2 a Vector to be tested
-- @treturn boolean is_vec2
function vec2.is_vec2(a)
if type(a) == "cdata" then
return ffi.istype("cpml_vec2", a)
end
return
type(a) == "table" and
type(a.x) == "number" and
type(a.y) == "number"
end
--- Return a boolean showing if a table is or is not a zero vec2.
-- @tparam vec2 a Vector to be tested
-- @treturn boolean is_zero
function vec2.is_zero(a)
return a.x == 0 and a.y == 0
end
--- Convert point from cartesian to polar.
-- @tparam vec2 a Vector to convert
-- @treturn number radius
-- @treturn number theta
function vec2.to_polar(a)
local radius = sqrt(a.x^2 + a.y^2)
local theta = atan2(a.y, a.x)
theta = theta > 0 and theta or theta + 2 * math.pi
return radius, theta
end
--- Return a formatted string.
-- @tparam vec2 a Vector to be turned into a string
-- @treturn string formatted
function vec2.to_string(a)
return string.format("(%+0.3f,%+0.3f)", a.x, a.y)
end
vec2_mt.__index = vec2
vec2_mt.__tostring = vec2.to_string
function vec2_mt.__call(_, x, y)
return vec2.new(x, y)
end
function vec2_mt.__unm(a)
return new(-a.x, -a.y)
end
function vec2_mt.__eq(a,b)
assert(vec2.is_vec2(a), "__eq: Wrong argument type for left hand operant. (<cpml.vec2> expected)")
assert(vec2.is_vec2(b), "__eq: Wrong argument type for right hand operant. (<cpml.vec2> expected)")
return a.x == b.x and a.y == b.y
end
function vec2_mt.__add(a, b)
assert(vec2.is_vec2(a), "__add: Wrong argument type for left hand operant. (<cpml.vec2> expected)")
assert(vec2.is_vec2(b), "__add: Wrong argument type for right hand operant. (<cpml.vec2> expected)")
return new():add(a, b)
end
function vec2_mt.__sub(a, b)
assert(vec2.is_vec2(a), "__add: Wrong argument type for left hand operant. (<cpml.vec2> expected)")
assert(vec2.is_vec2(b), "__add: Wrong argument type for right hand operant. (<cpml.vec2> expected)")
return new():sub(a, b)
end
function vec2_mt.__mul(a, b)
assert(vec2.is_vec2(a), "__mul: Wrong argument type for left hand operant. (<cpml.vec2> expected)")
assert(type(b) == "number", "__mul: Wrong argument type for right hand operant. (<number> expected)")
return new():mul(a, b)
end
function vec2_mt.__div(a, b)
assert(vec2.is_vec2(a), "__div: Wrong argument type for left hand operant. (<cpml.vec2> expected)")
assert(type(b) == "number", "__div: Wrong argument type for right hand operant. (<number> expected)")
return new():div(a, b)
end
if status then
ffi.metatype(new, vec2_mt)
end
return setmetatable({}, vec2_mt)