More LDoc tidying

This commit is contained in:
karai17 2016-07-24 20:57:59 -03:00
parent 871b86b4ab
commit 52eb8af61d
3 changed files with 164 additions and 147 deletions

View File

@ -15,7 +15,6 @@ local sin = math.sin
local min = math.min
local max = math.max
local sqrt = math.sqrt
local pi = math.pi
local quat = {}
local quat_mt = {}
@ -41,11 +40,12 @@ end
--- The public constructor.
-- @param x Can be of two types: </br>
-- number x component
-- table {x, y, z, w} or {x = x, y = y, z = z, w = w}
-- @tparam number y y component
-- @tparam number z z component
-- @tparam number w w component
-- number x X component
-- table {x, y, z, w} or {x=x, y=y, z=z, w=w}
-- @tparam number y Y component
-- @tparam number z Z component
-- @tparam number w W component
-- @treturn quat out
function quat.new(x, y, z, w)
-- number, number, number, number
if x and y and z and w then
@ -56,7 +56,7 @@ function quat.new(x, y, z, w)
return new(x, y, z, w)
-- {x=x, y=y, z=z, w=w} or {x, y, z, w}
-- {x, y, z, w} or {x=x, y=y, z=z, w=w}
elseif type(x) == "table" then
local x, y, z, w = x.x or x[1], x.y or x[2], x.z or x[3], x.w or x[4]
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
@ -70,10 +70,10 @@ function quat.new(x, y, z, w)
return new(0, 0, 0, 1)
end
--- Create a quaternion from an axis, angle pair.
-- @tparam number angle
--- Create a quaternion from an angle/axis pair.
-- @tparam number angle Angle (in radians)
-- @tparam vec3 axis
-- @treturn quat
-- @treturn quat out
function quat.from_angle_axis(angle, axis)
local len = axis:len()
local s = sin(angle * 0.5)
@ -81,10 +81,10 @@ function quat.from_angle_axis(angle, axis)
return new(axis.x * s, axis.y * s, axis.z * s, c)
end
--- Create a quaternion from a normalized, up vector pair.
--- Create a quaternion from a normal/up vector pair.
-- @tparam vec3 normal
-- @tparam vec3 up
-- @treturn quat
-- @treturn quat out
function quat.from_direction(normal, up)
local a = vec3():cross(up, normal)
local d = up:dot(normal)
@ -92,16 +92,16 @@ function quat.from_direction(normal, up)
end
--- Clone a quaternion.
-- @tparam quat a
-- @treturn quat clone
-- @tparam quat a Quaternion to clone
-- @treturn quat out
function quat.clone(a)
return new(a.x, a.y, a.z, a.w)
end
--- Component-wise add a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat b
--- Add two quaternions.
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Left hand operant
-- @tparam quat b Right hand operant
-- @treturn quat out
function quat.add(out, a, b)
out.x = a.x + b.x
@ -111,10 +111,10 @@ function quat.add(out, a, b)
return out
end
--- Component-wise subtract a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat b
--- Subtract a quaternion from another.
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Left hand operant
-- @tparam quat b Right hand operant
-- @treturn quat out
function quat.sub(out, a, b)
out.x = a.x - b.x
@ -124,10 +124,10 @@ function quat.sub(out, a, b)
return out
end
--- Perform a quaternion multiplication.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat b
--- Multiply two quaternions.
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Left hand operant
-- @tparam quat b Right hand operant
-- @treturn quat out
function quat.mul(out, a, b)
out.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y
@ -137,11 +137,11 @@ function quat.mul(out, a, b)
return out
end
--- Perform a quaternion and vec3 multiplication.
-- @tparam quat out
-- @tparam quat a
-- @tparam vec3 b
-- @treturn vec3 out
--- Multiply a quaternion and a vec3.
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn quat out
local uv, uuv = vec3(), vec3()
function quat.mul_vec3(out, a, b)
uv:cross(a, b)
@ -154,10 +154,10 @@ function quat.mul_vec3(out, a, b)
:add(b, out)
end
--- Pow a quaternion by an exponent
-- @tparam quat out
-- @tparam quat a
-- @tparam number n
--- Multiply a quaternion by an exponent.
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Left hand operant
-- @tparam number n Right hand operant
-- @treturn quat out
function quat.pow(out, a, n)
if n == 0 then
@ -183,39 +183,39 @@ function quat.pow(out, a, n)
end
--- Normalize a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Quaternion to normalize
-- @treturn quat out
function quat.normalize(out, a)
return out:scale(a, 1 / a:len())
end
--- Return the inner angle between two quaternions.
-- @tparam quat a
-- @tparam quat b
-- @treturn number angle
--- Get the dot product of two quaternions.
-- @tparam quat a Left hand operant
-- @tparam quat b Right hand operant
-- @treturn number dot
function quat.dot(a, b)
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w
end
--- Return the length of a quaternion.
-- @tparam quat a
-- @tparam quat a Quaternion to get length of
-- @treturn number len
function quat.len(a)
return sqrt(a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w)
end
--- Return the squared length of a quaternion.
-- @tparam quat a
-- @tparam quat a Quaternion to get length of
-- @treturn number len
function quat.len2(a)
return a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w
end
--- Component-wise scale a quaternion by a scalar.
-- @tparam quat out
-- @tparam quat a
-- @tparam number s
--- Multiply a quaternion by a scalar.
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Left hand operant
-- @tparam number s Right hand operant
-- @treturn quat out
function quat.scale(out, a, s)
out.x = a.x * s
@ -226,8 +226,8 @@ function quat.scale(out, a, s)
end
--- Return the conjugate of a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Quaternion to conjugate
-- @treturn quat out
function quat.conjugate(out, a)
out.x = -a.x
@ -238,8 +238,8 @@ function quat.conjugate(out, a)
end
--- Return the inverse of a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Quaternion to invert
-- @treturn quat out
function quat.inverse(out, a)
return out
@ -248,8 +248,8 @@ function quat.inverse(out, a)
end
--- Return the reciprocal of a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Quaternion to reciprocate
-- @treturn quat out
function quat.reciprocal(out, a)
assert(not a:is_zero(), "Cannot reciprocate a zero quaternion")
@ -258,11 +258,11 @@ function quat.reciprocal(out, a)
:scale(out, 1 / a:len2())
end
--- Linearly interpolate from one quaternion to the next.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat b
-- @tparam number s 0-1 range number; 0 = a 1 = b
--- Lerp between two quaternions.
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Left hand operant
-- @tparam quat b Right hand operant
-- @tparam number s Step value
-- @treturn quat out
function quat.lerp(out, a, b, s)
return out
@ -272,11 +272,11 @@ function quat.lerp(out, a, b, s)
:normalize(out)
end
--- Slerp from one quaternion to the next.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat b
-- @tparam number s 0-1 range number; 0 = a 1 = b
--- Slerp between two quaternions.
-- @tparam quat out Quaternion to store the result
-- @tparam quat a Left hand operant
-- @tparam quat b Right hand operant
-- @tparam number s Step value
-- @treturn quat out
function quat.slerp(out, a, b, s)
local dot = a:dot(b)
@ -303,8 +303,8 @@ function quat.slerp(out, a, b, s)
:add(tmp, out)
end
--- Unpack a quaternion into form x,y,z,w.
-- @tparam quat a
--- Unpack a quaternion into individual components.
-- @tparam quat a Quaternion to unpack
-- @treturn number x
-- @treturn number y
-- @treturn number z
@ -313,6 +313,54 @@ function quat.unpack(a)
return a.x, a.y, a.z, a.w
end
--- Return a boolean showing if a table is or is not a quat.
-- @tparam quat a Quaternion to be tested
-- @treturn boolean is_quat
function quat.is_quat(a)
if type(a) == "cdata" then
return ffi.istype("cpml_quat", a)
end
return
type(a) == "table" and
type(a.x) == "number" and
type(a.y) == "number" and
type(a.z) == "number" and
type(a.w) == "number"
end
--- Return a boolean showing if a table is or is not a zero quat.
-- @tparam quat a Quaternion to be tested
-- @treturn boolean is_zero
function quat.is_zero(a)
return
a.x == 0 and
a.y == 0 and
a.z == 0 and
a.w == 0
end
--- Return a boolean showing if a table is or is not a real quat.
-- @tparam quat a Quaternion to be tested
-- @treturn boolean is_real
function quat.is_real(a)
return
a.x == 0 and
a.y == 0 and
a.z == 0
end
--- Return a boolean showing if a table is or is not an imaginary quat.
-- @tparam quat a Quaternion to be tested
-- @treturn boolean is_imaginary
function quat.is_imaginary(a)
return a.w == 0
end
--- Convert a quaternion into an angle/axis pair.
-- @tparam quat a Quaternion to convert
-- @treturn number angle
-- @treturn vec3 axis
function quat.to_angle_axis(a)
if a.w > 1 or a.w < -1 then
a:normalize(a)
@ -335,6 +383,9 @@ function quat.to_angle_axis(a)
return angle, vec3(x, y, z)
end
--- Convert a quaternion into a vec3.
-- @tparam quat a Quaternion to convert
-- @treturn vec3 out
function quat.to_vec3(a)
local out = vec3()
out.x = a.x
@ -343,48 +394,13 @@ function quat.to_vec3(a)
return out
end
--- Return a string formatted "{x, y, z, w}"
-- @tparam quat a
-- @treturn string
--- Return a formatted string.
-- @tparam quat a Quaternion to be turned into a string
-- @treturn string formatted
function quat.to_string(a)
return string.format("(%+0.3f,%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z, a.w)
end
--- Return a boolean showing if a table is or is not a quat
-- @param q object to be tested
-- @treturn boolean
function quat.is_quat(a)
if type(a) == "cdata" then
return ffi.istype("cpml_quat", a)
end
return
type(a) == "table" and
type(a.x) == "number" and
type(a.y) == "number" and
type(a.z) == "number" and
type(a.w) == "number"
end
function quat.is_zero(a)
return
a.x == 0 and
a.y == 0 and
a.z == 0 and
a.w == 0
end
function quat.is_real(a)
return
a.x == 0 and
a.y == 0 and
a.z == 0
end
function quat.is_imaginary(a)
return a.w == 0
end
quat_mt.__index = quat
quat_mt.__tostring = quat.to_string

View File

@ -40,6 +40,7 @@ vec2.zero = new(0, 0)
-- table {x, y} or {x = x, y = y}
-- scalar to fill the vector eg. {x, x}
-- @tparam number y Y component
-- @treturn vec2 out
function vec2.new(x, y)
-- number, number
if x and y then
@ -67,14 +68,14 @@ end
--- Convert point from polar to cartesian.
-- @tparam number radius Radius of the point
-- @tparam number theta Angle of the point (in radians)
-- @treturn vec2
-- @treturn vec2 out
function vec2.from_cartesian(radius, theta)
return new(radius * cos(theta), radius * sin(theta))
end
--- Clone a vector.
-- @tparam vec2 a Vector to be cloned
-- @treturn vec2
-- @treturn vec2 out
function vec2.clone(a)
return new(a.x, a.y)
end
@ -83,7 +84,7 @@ end
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2
-- @treturn vec2 out
function vec2.add(out, a, b)
out.x = a.x + b.x
out.y = a.y + b.y
@ -94,7 +95,7 @@ end
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2
-- @treturn vec2 out
function vec2.sub(out, a, b)
out.x = a.x - b.x
out.y = a.y - b.y
@ -105,7 +106,7 @@ end
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2
-- @treturn vec2 out
function vec2.mul(out, a, b)
out.x = a.x * b
out.y = a.y * b
@ -116,7 +117,7 @@ end
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2
-- @treturn vec2 out
function vec2.div(out, a, b)
out.x = a.x / b
out.y = a.y / b
@ -126,7 +127,7 @@ end
--- Get the normal of a vector.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to normalize
-- @treturn vec2
-- @treturn vec2 out
function vec2.normalize(out, a)
local l = a:len()
out.x = a.x / l
@ -138,7 +139,7 @@ end
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to be trimmed
-- @tparam number len Length to trim the vector to
-- @treturn vec2
-- @treturn vec2 out
function vec2.trim(out, a, len)
return out
:normalize(a)
@ -148,7 +149,7 @@ end
--- Get the cross product of two vectors.
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number Magnitude of cross product in 3D
-- @treturn number magnitude
function vec2.cross(a, b)
return a.x * b.y - a.y * b.x
end
@ -156,21 +157,21 @@ end
--- Get the dot product of two vectors.
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number
-- @treturn number dot
function vec2.dot(a, b)
return a.x * b.x + a.y * b.y
end
--- Get the length of a vector.
-- @tparam vec2 a Vector to get the length of
-- @treturn number
-- @treturn number len
function vec2.len(a)
return sqrt(a.x * a.x + a.y * a.y)
end
--- Get the squared length of a vector.
-- @tparam vec2 a Vector to get the squared length of
-- @treturn number
-- @treturn number len
function vec2.len2(a)
return a.x * a.x + a.y * a.y
end
@ -178,7 +179,7 @@ end
--- Get the distance between two vectors.
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number
-- @treturn number dist
function vec2.dist(a, b)
local dx = a.x - b.x
local dy = a.y - b.y
@ -188,7 +189,7 @@ end
--- Get the squared distance between two vectors.
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number
-- @treturn number dist
function vec2.dist2(a, b)
local dx = a.x - b.x
local dy = a.y - b.y
@ -199,7 +200,7 @@ end
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to rotate
-- @tparam number phi Angle to rotate vector by (in radians)
-- @treturn vec2
-- @treturn vec2 out
function vec2.rotate(out, a, phi)
local c = cos(phi)
local s = sin(phi)
@ -211,7 +212,7 @@ end
--- Get the perpendicular vector of a vector.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to get perpendicular axes from
-- @treturn vec2
-- @treturn vec2 out
function vec2.perpendicular(out, a)
out.x = -a.y
out.y = a.x
@ -223,7 +224,7 @@ end
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @tparam number s Step value
-- @treturn vec2
-- @treturn vec2 out
function vec2.lerp(out, a, b, s)
return out
:sub(b, a)
@ -233,15 +234,15 @@ end
--- Unpack a vector into individual components.
-- @tparam vec2 a Vector to unpack
-- @treturn number x X component
-- @treturn number y Y component
-- @treturn number x
-- @treturn number y
function vec2.unpack(a)
return a.x, a.y
end
--- Return a boolean showing if a table is or is not a vec2.
-- @tparam vec2 a Vector to be tested
-- @treturn boolean
-- @treturn boolean is_vec2
function vec2.is_vec2(a)
if type(a) == "cdata" then
return ffi.istype("cpml_vec2", a)
@ -255,7 +256,7 @@ end
--- Return a boolean showing if a table is or is not a zero vec2.
-- @tparam vec2 a Vector to be tested
-- @treturn boolean
-- @treturn boolean is_zero
function vec2.is_zero(a)
return a.x == 0 and a.y == 0
end
@ -273,7 +274,7 @@ end
--- Return a formatted string.
-- @tparam vec2 a Vector to be turned into a string
-- @treturn string
-- @treturn string formatted
function vec2.to_string(a)
return string.format("(%+0.3f,%+0.3f)", a.x, a.y)
end

View File

@ -45,7 +45,7 @@ local tmp = new(0, 0, 0)
-- scalar To fill the vector eg. {x, x, x}
-- @tparam number y Y component
-- @tparam number z Z component
-- @treturn vec3
-- @treturn vec3 out
function vec3.new(x, y, z)
-- number, number, number
if x and y and z then
@ -74,7 +74,7 @@ end
--- Clone a vector.
-- @tparam vec3 a Vector to be cloned
-- @treturn vec3
-- @treturn vec3 out
function vec3.clone(a)
return new(a.x, a.y, a.z)
end
@ -83,7 +83,7 @@ end
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn vec3
-- @treturn vec3 out
function vec3.add(out, a, b)
out.x = a.x + b.x
out.y = a.y + b.y
@ -95,7 +95,7 @@ end
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn vec3
-- @treturn vec3 out
function vec3.sub(out, a, b)
out.x = a.x - b.x
out.y = a.y - b.y
@ -107,7 +107,7 @@ end
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam number b Right hand operant
-- @treturn vec3
-- @treturn vec3 out
function vec3.mul(out, a, b)
out.x = a.x * b
out.y = a.y * b
@ -119,7 +119,7 @@ end
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam number b Right hand operant
-- @treturn vec3
-- @treturn vec3 out
function vec3.div(out, a, b)
out.x = a.x / b
out.y = a.y / b
@ -130,7 +130,7 @@ end
--- Get the normal of a vector.
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Vector to normalize
-- @treturn vec3
-- @treturn vec3 out
function vec3.normalize(out, a)
local l = vec3.len(a)
out.x = a.x / l
@ -143,7 +143,7 @@ end
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Vector to be trimmed
-- @tparam number len Length to trim the vector to
-- @treturn vec3
-- @treturn vec3 out
function vec3.trim(out, a, len)
return out
:normalize(a)
@ -154,7 +154,7 @@ end
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn vec3
-- @treturn vec3 out
function vec3.cross(out, a, b)
out.x = a.y * b.z - a.z * b.y
out.y = a.z * b.x - a.x * b.z
@ -165,21 +165,21 @@ end
--- Get the dot product of two vectors.
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn number
-- @treturn number dot
function vec3.dot(a, b)
return a.x * b.x + a.y * b.y + a.z * b.z
end
--- Get the length of a vector.
-- @tparam vec3 a Vector to get the length of
-- @treturn number
-- @treturn number len
function vec3.len(a)
return sqrt(a.x * a.x + a.y * a.y + a.z * a.z)
end
--- Get the squared length of a vector.
-- @tparam vec3 a Vector to get the squared length of
-- @treturn number
-- @treturn number len
function vec3.len2(a)
return a.x * a.x + a.y * a.y + a.z * a.z
end
@ -187,7 +187,7 @@ end
--- Get the distance between two vectors.
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn number
-- @treturn number dist
function vec3.dist(a, b)
local dx = a.x - b.x
local dy = a.y - b.y
@ -198,7 +198,7 @@ end
--- Get the squared distance between two vectors.
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn number
-- @treturn number dist
function vec3.dist2(a, b)
local dx = a.x - b.x
local dy = a.y - b.y
@ -211,7 +211,7 @@ end
-- @tparam vec3 a Vector to rotate
-- @tparam number phi Amount to rotate, in radians
-- @tparam vec3 axis Axis to rotate by
-- @treturn vec3
-- @treturn vec3 out
function vec3.rotate(out, a, phi, axis)
if not vec3.is_vec3(axis) then
return a
@ -244,7 +244,7 @@ end
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @tparam number s Step value
-- @treturn vec3
-- @treturn vec3 out
function vec3.lerp(out, a, b, s)
return out
:sub(b, a)
@ -254,16 +254,16 @@ end
--- Unpack a vector into individual components.
-- @tparam vec3 a Vector to unpack
-- @treturn number x x component
-- @treturn number y y component
-- @treturn number z z component
-- @treturn number x
-- @treturn number y
-- @treturn number z
function vec3.unpack(a)
return a.x, a.y, a.z
end
--- Return a boolean showing if a table is or is not a vec3.
-- @tparam vec3 a Vector to be tested
-- @treturn boolean
-- @treturn boolean is_vec3
function vec3.is_vec3(a)
if type(a) == "cdata" then
return ffi.istype("cpml_vec3", a)
@ -278,7 +278,7 @@ end
--- Return a boolean showing if a table is or is not a zero vec3.
-- @tparam vec3 a Vector to be tested
-- @treturn boolean
-- @treturn boolean is_zero
function vec3.is_zero(a)
return
a.x == 0 and
@ -288,7 +288,7 @@ end
--- Return a formatted string.
-- @tparam vec3 a Vector to be turned into a string
-- @treturn string
-- @treturn string formatted
function vec3.to_string(a)
return string.format("(%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z)
end