karai17 4f9bc17bf4 Refactored mat4
Did some tidying up on quat, vec2, vec3, and utils
2016-07-19 23:55:21 -03:00

463 lines
11 KiB
Lua

--- A quaternion and associated utilities.
-- @module quat
local modules = (...):gsub('%.[^%.]+$', '') .. "."
local constants = require(modules .. "constants")
local vec3 = require(modules .. "vec3")
local DOT_THRESHOLD = constants.DOT_THRESHOLD
local DBL_EPSILON = constants.DBL_EPSILON
local abs = math.abs
local acos = math.acos
local asin = math.asin
local atan2 = math.atan2
local cos = math.cos
local sin = math.sin
local min = math.min
local max = math.max
local sqrt = math.sqrt
local pi = math.pi
local quat = {}
-- Private constructor.
local function new(x, y, z, w)
local q = {}
q.x, q.y, q.z, q.w = x, y, z, w
return setmetatable(q, quat_mt)
end
quat.unit = new(0, 0, 0, 1)
quat.zero = new(0, 0, 0, 0)
-- Do the check to see if JIT is enabled. If so use the optimized FFI structs.
local status, ffi
if type(jit) == "table" and jit.status() then
status, ffi = pcall(require, "ffi")
if status then
ffi.cdef "typedef struct { double x, y, z, w;} cpml_quat;"
new = ffi.typeof("cpml_quat")
end
end
--- The public constructor.
-- @param x Can be of two types: </br>
-- number x component
-- table {x, y, z, w} or {x = x, y = y, z = z, w = w}
-- @tparam number y y component
-- @tparam number z z component
-- @tparam number w w component
function quat.new(x, y, z, w)
-- number, number, number, number
if x and y and z and w then
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
assert(type(y) == "number", "new: Wrong argument type for y (<number> expected)")
assert(type(z) == "number", "new: Wrong argument type for z (<number> expected)")
assert(type(w) == "number", "new: Wrong argument type for w (<number> expected)")
return new(x, y, z, w)
-- {x=x, y=y, z=z, w=w} or {x, y, z, w}
elseif type(x) == "table" then
local x, y, z, w = x.x or x[1], x.y or x[2], x.z or x[3], x.w or x[4]
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
assert(type(y) == "number", "new: Wrong argument type for y (<number> expected)")
assert(type(z) == "number", "new: Wrong argument type for z (<number> expected)")
assert(type(w) == "number", "new: Wrong argument type for w (<number> expected)")
return new(x, y, z, w)
else
return new(0, 0, 0, 1)
end
end
--- Create a quaternion from an axis, angle pair.
-- @tparam number angle
-- @tparam vec3 axis
-- @treturn quat
function quat.from_angle_axis(angle, axis)
local len = vec3.len(axis)
local s = sin(angle * 0.5)
local c = cos(angle * 0.5)
return new(axis.x * s, axis.y * s, axis.z * s, c)
end
--- Create a quaternion from a normalized, up vector pair.
-- @tparam vec3 normal
-- @tparam vec3 up
-- @treturn quat
function quat.from_direction(normal, up)
local a = vec3.cross(vec3(), up, normal)
local d = vec3.dot(up, normal)
return new(a.x, a.y, a.z, d + 1)
end
--- Clone a quaternion.
-- @tparam quat a
-- @treturn quat clone
function quat.clone(a)
return new(a.x, a.y, a.z, a.w)
end
--- Component-wise add a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat b
-- @treturn quat out
function quat.add(out, a, b)
out.x = a.x + b.x
out.y = a.y + b.y
out.z = a.z + b.z
out.w = a.w + b.w
return out
end
--- Component-wise subtract a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat b
-- @treturn quat out
function quat.sub(out, a, b)
out.x = a.x - b.x
out.y = a.y - b.y
out.z = a.z - b.z
out.w = a.w - b.w
return out
end
--- Perform a quaternion multiplication.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat b
-- @treturn quat out
function quat.mul(out, a, b)
out.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y
out.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z
out.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x
out.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z
return out
end
--- Perform a quaternion and vec3 multiplication.
-- @tparam quat out
-- @tparam quat a
-- @tparam vec3 b
-- @treturn vec3 out
local uv, uuv = vec3(), vec3()
function quat.mul_vec3(out, a, b)
vec3.cross(uv, a, b)
vec3.cross(uuv, a, uv)
vec3.mul(out, uv, a.w)
vec3.add(out, out, uuv)
vec3.mul(out, out, 2)
vec3.add(out, b, out)
return out
end
--- Pow a quaternion by an exponent
-- @tparam quat out
-- @tparam quat a
-- @tparam number n
-- @treturn quat out
function quat.pow(out, a, n)
if n == 0 then
out.x = 0
out.y = 0
out.z = 0
out.w = 1
elseif n > 0 then
out.x = a.x^(n-1)
out.y = a.y^(n-1)
out.z = a.z^(n-1)
out.w = a.w^(n-1)
quat.mul(out, a, out)
elseif n < 0 then
quat.reciprocal(out, a)
out.x = out.x^(-n)
out.y = out.y^(-n)
out.z = out.z^(-n)
out.w = out.w^(-n)
end
return out
end
--- Normalize a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @treturn quat out
function quat.normalize(out, a)
local l = 1 / quat.len(a)
quat.scale(out, a, l)
return out
end
--- Return the inner angle between two quaternions.
-- @tparam quat a
-- @tparam quat b
-- @treturn number angle
function quat.dot(a, b)
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w
end
--- Return the length of a quaternion.
-- @tparam quat a
-- @treturn number len
function quat.len(a)
return sqrt(a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w)
end
--- Return the squared length of a quaternion.
-- @tparam quat a
-- @treturn number len
function quat.len2(a)
return a.x * a.x + a.y * a.y + a.z * a.z + a.w * a.w
end
--- Component-wise scale a quaternion by a scalar.
-- @tparam quat out
-- @tparam quat a
-- @tparam number s
-- @treturn quat out
function quat.scale(out, a, s)
out.x = a.x * s
out.y = a.y * s
out.z = a.z * s
out.w = a.w * s
return out
end
--- Return the conjugate of a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @treturn quat out
function quat.conjugate(out, a)
out.x = -a.x
out.y = -a.y
out.z = -a.z
out.w = a.w
return out
end
--- Return the inverse of a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @treturn quat out
function quat.inverse(out, a)
quat.conjugate(out, a)
quat.normalize(out, out)
return out
end
--- Return the reciprocal of a quaternion.
-- @tparam quat out
-- @tparam quat a
-- @treturn quat out
function quat.reciprocal(out, a)
assert(not quat.is_zer(a), "Cannot reciprocate a zero quaternion")
local l = quat.len2(a)
quat.conjugate(out, a)
quat.scale(out, out, 1 / l)
return out
end
--- Linearly interpolate from one quaternion to the next.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat b
-- @tparam number s 0-1 range number; 0 = a 1 = b
-- @treturn quat out
function quat.lerp(out, a, b, s)
quat.sub(out, b, a)
quat.mul(out, out, s)
quat.add(out, a, out)
quat.normalize(out, out)
return out
end
--- Slerp from one quaternion to the next.
-- @tparam quat out
-- @tparam quat a
-- @tparam quat b
-- @tparam number s 0-1 range number; 0 = a 1 = b
-- @treturn quat out
function quat.slerp(out, a, b, s)
local dot = quat.dot(a, b)
if dot < 0 then
quat.scale(a, a, -1)
dot = -dot
end
if dot > DOT_THRESHOLD then
quat.lerp(out, a, b, s)
return
end
dot = min(max(dot, -1), 1)
local temp = quat.new()
local theta = acos(dot) * s
quat.scale(out, a, dot)
quat.sub(out, b, out)
quat.normalize(out, out)
quat.scale(out, out, sin(theta))
quat.scale(temp, a, cos(theta))
quat.add(out, temp, out)
return out
end
--- Return the imaginary part of the quaternion as a vec3.
-- @tparam vec3 out
-- @tparam quat a
-- @treturn vec3 out
function quat.imaginary(out, a)
out.x = a.x
out.y = a.y
out.z = a.z
return out
end
--- Return the real part of a quaternion.
-- @tparam quat a
-- @treturn number real
function quat.real(a)
return a.w
end
--- Unpack a quaternion into form x,y,z,w.
-- @tparam quat a
-- @treturn number x
-- @treturn number y
-- @treturn number z
-- @treturn number w
function quat.unpack(a)
return a.x, a.y, a.z, a.w
end
function quat.to_angle_axis(a)
if a.w > 1 or a.w < -1 then
a = quat.normalize(a, a)
end
local angle = 2 * acos(a.w)
local s = sqrt(1 - a.w * a.w)
local x, y, z
if s < constants.DBL_EPSILON then
x = a.x
y = a.y
z = a.z
else
x = a.x / s -- normalize axis
y = a.y / s
z = a.z / s
end
return angle, vec3(x, y, z)
end
function quat.to_vec3(out, a)
out.x = a.x
out.y = a.y
out.z = a.z
return out
end
--- Return a string formatted "{x, y, z, w}"
-- @tparam quat a
-- @treturn string
function quat.to_string(a)
return string.format("(%+0.3f,%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z, a.w)
end
--- Return a boolean showing if a table is or is not a quat
-- @param q object to be tested
-- @treturn boolean
function quat.is_quat(q)
return
(
type(v) == "table" or
type(v) == "cdata"
) and
type(v.x) == "number" and
type(v.y) == "number" and
type(v.z) == "number" and
type(v.w) == "number"
end
function quat.is_zero(a)
return
a.x == 0 and
a.y == 0 and
a.z == 0 and
a.w == 0
end
function quat.is_real(a)
return
a.x == 0 and
a.y == 0 and
a.z == 0
end
function quat.is_imaginary(a)
return a.w == 0
end
local quat_mt = {}
quat_mt.__index = quat
quat_mt.__tostring = quat.to_string
function quat_mt.__call(self, x, y, z, w)
return new(x, y, z, w)
end
function quat_mt.__unm(a)
return quat.scale(new(), a, -1)
end
function quat_mt.__eq(a,b)
assert(quat.is_quat(a), "__eq: Wrong argument type for left hand operant. (<cpml.quat> expected)")
assert(quat.is_quat(b), "__eq: Wrong argument type for right hand operant. (<cpml.quat> expected)")
return a.x == b.x and a.y == b.y and a.z == b.z and a.w == b.w
end
function quat_mt.__add(a, b)
assert(quat.is_quat(a), "__add: Wrong argument type for left hand operant. (<cpml.quat> expected)")
assert(quat.is_quat(b), "__add: Wrong argument type for right hand operant. (<cpml.quat> expected)")
return quat.add(new(), a, b)
end
function quat_mt.__sub(a, b)
assert(quat.is_quat(a), "__sub: Wrong argument type for left hand operant. (<cpml.quat> expected)")
assert(quat.is_quat(b), "__sub: Wrong argument type for right hand operant. (<cpml.quat> expected)")
return quat.sub(new(), a, b)
end
function quat_mt.__mul(a, b)
assert(quat.is_quat(a), "__mul: Wrong argument type for left hand operant. (<cpml.quat> expected)")
assert(quat.is_quat(b) or vec3.is_vec3(b) or type(b) = "number", "__mul: Wrong argument type for right hand operant. (<cpml.quat> or <cpml.vec3> expected)")
if quat.is_quat(b) then
return quat.mul(new(), a, b)
end
if type(b) == "number" then
return quat.scale(new(), a, b)
end
return quat.mul_vec3(vec3(), a, b)
end
function quat_mt.__pow(a, n)
assert(quat.is_quat(a), "__pow: Wrong argument type for left hand operant. (<cpml.quat> expected)")
assert(type(b) == "number", "__pow: Wrong argument type for right hand operant. (<number> expected)")
return quat.pow(new(), a, n)
end
if status then
ffi.metatype(new, quat_mt)
end
return setmetatable({}, quat_mt)