Updated LDoc data for vec2 and vec3

This commit is contained in:
karai17 2016-07-24 20:26:56 -03:00
parent 6daa845533
commit 871b86b4ab
2 changed files with 122 additions and 80 deletions

View File

@ -25,16 +25,21 @@ if type(jit) == "table" and jit.status() then
end
end
--- Constants
-- @table vec2
-- @field unit_x X axis of rotation
-- @field unit_y Y axis of rotation
-- @field zero Empty vector
vec2.unit_x = new(1, 0)
vec2.unit_y = new(0, 1)
vec2.zero = new(0, 0)
--- The public constructor.
-- @param x Can be of three types: </br>
-- number x component
-- number X component
-- table {x, y} or {x = x, y = y}
-- scalar to fill the vector eg. {x, x}
-- @tparam number y y component
-- @tparam number y Y component
function vec2.new(x, y)
-- number, number
if x and y then
@ -43,7 +48,7 @@ function vec2.new(x, y)
return new(x, y)
-- {x=x, y=y} or {x, y}
-- {x, y} or {x=x, y=y}
elseif type(x) == "table" then
local x, y = x.x or x[1], x.y or x[2]
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
@ -51,7 +56,7 @@ function vec2.new(x, y)
return new(x, y)
-- {x, x} eh. {0, 0}, {3, 3}
-- number
elseif type(x) == "number" then
return new(x, x)
else
@ -60,24 +65,25 @@ function vec2.new(x, y)
end
--- Convert point from polar to cartesian.
-- @tparam number radius radius of the point
-- @tparam number theta angle of the point (in radians)
-- @tparam number radius Radius of the point
-- @tparam number theta Angle of the point (in radians)
-- @treturn vec2
function vec2.from_cartesian(radius, theta)
return new(radius * cos(theta), radius * sin(theta))
end
--- Clone a vector.
-- @tparam vec2 a vector to be cloned
-- @tparam vec2 a Vector to be cloned
-- @treturn vec2
function vec2.clone(a)
return new(a.x, a.y)
end
--- Add two vectors.
-- @tparam vec2 out vector to store the result
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2
function vec2.add(out, a, b)
out.x = a.x + b.x
out.y = a.y + b.y
@ -85,9 +91,10 @@ function vec2.add(out, a, b)
end
--- Subtract one vector from another.
-- @tparam vec2 out vector to store the result
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2
function vec2.sub(out, a, b)
out.x = a.x - b.x
out.y = a.y - b.y
@ -95,9 +102,10 @@ function vec2.sub(out, a, b)
end
--- Multiply a vector by a scalar.
-- @tparam vec2 out vector to store the result
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam number b Right hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2
function vec2.mul(out, a, b)
out.x = a.x * b
out.y = a.y * b
@ -105,9 +113,10 @@ function vec2.mul(out, a, b)
end
--- Divide one vector by a scalar.
-- @tparam vec2 out vector to store the result
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam number b Right hand operant
-- @tparam vec2 b Right hand operant
-- @treturn vec2
function vec2.div(out, a, b)
out.x = a.x / b
out.y = a.y / b
@ -115,8 +124,9 @@ function vec2.div(out, a, b)
end
--- Get the normal of a vector.
-- @tparam vec2 out vector to store the result
-- @tparam vec2 a vector to normalize
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to normalize
-- @treturn vec2
function vec2.normalize(out, a)
local l = a:len()
out.x = a.x / l
@ -124,10 +134,11 @@ function vec2.normalize(out, a)
return out
end
--- Trim a vector to a given length
-- @tparam vec2 out vector to store the result
-- @tparam vec2 a vector to be trimmed
-- @tparam number len the length to trim the vector to
--- Trim a vector to a given length.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to be trimmed
-- @tparam number len Length to trim the vector to
-- @treturn vec2
function vec2.trim(out, a, len)
return out
:normalize(a)
@ -137,7 +148,7 @@ end
--- Get the cross product of two vectors.
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number magnitude of cross product in 3d
-- @treturn number Magnitude of cross product in 3D
function vec2.cross(a, b)
return a.x * b.y - a.y * b.x
end
@ -151,22 +162,22 @@ function vec2.dot(a, b)
end
--- Get the length of a vector.
-- @tparam vec2 a vector to get the length of
-- @tparam vec2 a Vector to get the length of
-- @treturn number
function vec2.len(a)
return sqrt(a.x * a.x + a.y * a.y)
end
--- Get the squared length of a vector.
-- @tparam vec2 a vector to get the squared length of
-- @tparam vec2 a Vector to get the squared length of
-- @treturn number
function vec2.len2(a)
return a.x * a.x + a.y * a.y
end
--- Get the distance between two vectors.
-- @tparam vec2 a first vector
-- @tparam vec2 b second vector
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number
function vec2.dist(a, b)
local dx = a.x - b.x
@ -175,8 +186,8 @@ function vec2.dist(a, b)
end
--- Get the squared distance between two vectors.
-- @tparam vec2 a first vector
-- @tparam vec2 b second vector
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @treturn number
function vec2.dist2(a, b)
local dx = a.x - b.x
@ -184,6 +195,11 @@ function vec2.dist2(a, b)
return dx * dx + dy * dy
end
--- Rotate a vector.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to rotate
-- @tparam number phi Angle to rotate vector by (in radians)
-- @treturn vec2
function vec2.rotate(out, a, phi)
local c = cos(phi)
local s = sin(phi)
@ -192,6 +208,10 @@ function vec2.rotate(out, a, phi)
return out
end
--- Get the perpendicular vector of a vector.
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Vector to get perpendicular axes from
-- @treturn vec2
function vec2.perpendicular(out, a)
out.x = -a.y
out.y = a.x
@ -199,10 +219,10 @@ function vec2.perpendicular(out, a)
end
--- Lerp between two vectors.
-- @tparam vec2 out vector for result to be stored in
-- @tparam vec2 a first vector
-- @tparam vec2 b second vector
-- @tparam number s step value
-- @tparam vec2 out Vector to store the result
-- @tparam vec2 a Left hand operant
-- @tparam vec2 b Right hand operant
-- @tparam number s Step value
-- @treturn vec2
function vec2.lerp(out, a, b, s)
return out
@ -211,16 +231,16 @@ function vec2.lerp(out, a, b, s)
:add(out, a)
end
--- Unpack a vector into form x,y
-- @tparam vec2 a first vector
-- @treturn number x component
-- @treturn number y component
--- Unpack a vector into individual components.
-- @tparam vec2 a Vector to unpack
-- @treturn number x X component
-- @treturn number y Y component
function vec2.unpack(a)
return a.x, a.y
end
--- Return a boolean showing if a table is or is not a vec2
-- @param v the object to be tested
--- Return a boolean showing if a table is or is not a vec2.
-- @tparam vec2 a Vector to be tested
-- @treturn boolean
function vec2.is_vec2(a)
if type(a) == "cdata" then
@ -233,12 +253,15 @@ function vec2.is_vec2(a)
type(a.y) == "number"
end
--- Return a boolean showing if a table is or is not a zero vec2.
-- @tparam vec2 a Vector to be tested
-- @treturn boolean
function vec2.is_zero(a)
return a.x == 0 and a.y == 0
end
--- Convert point from cartesian to polar.
-- @tparam vec2 a vector to convert
-- @tparam vec2 a Vector to convert
-- @treturn number radius
-- @treturn number theta
function vec2.to_polar(a)
@ -248,8 +271,8 @@ function vec2.to_polar(a)
return radius, theta
end
--- Return a string formatted "{x, y}"
-- @tparam vec2 a the vector to be turned into a string
--- Return a formatted string.
-- @tparam vec2 a Vector to be turned into a string
-- @treturn string
function vec2.to_string(a)
return string.format("(%+0.3f,%+0.3f)", a.x, a.y)

View File

@ -24,6 +24,12 @@ if type(jit) == "table" and jit.status() then
end
end
--- Constants
-- @table vec3
-- @field unit_x X axis of rotation
-- @field unit_y Y axis of rotation
-- @field unit_z Z axis of rotation
-- @field zero Empty vector
vec3.unit_x = new(1, 0, 0)
vec3.unit_y = new(0, 1, 0)
vec3.unit_z = new(0, 0, 1)
@ -34,11 +40,12 @@ local tmp = new(0, 0, 0)
--- The public constructor.
-- @param x Can be of three types: </br>
-- number x component
-- table {x, y, z} or {x = x, y = y, z = z}
-- scalar to fill the vector eg. {x, x, x}
-- @tparam number y y component
-- @tparam number z z component
-- number X component
-- table {x, y, z} or {x=x, y=y, z=z}
-- scalar To fill the vector eg. {x, x, x}
-- @tparam number y Y component
-- @tparam number z Z component
-- @treturn vec3
function vec3.new(x, y, z)
-- number, number, number
if x and y and z then
@ -48,7 +55,7 @@ function vec3.new(x, y, z)
return new(x, y, z)
-- {x=x, y=y, z=z} or {x, y, z}
-- {x, y, z} or {x=x, y=y, z=z}
elseif type(x) == "table" then
local x, y, z = x.x or x[1], x.y or x[2], x.z or x[3]
assert(type(x) == "number", "new: Wrong argument type for x (<number> expected)")
@ -57,7 +64,7 @@ function vec3.new(x, y, z)
return new(x, y, z)
-- {x, x, x} eh. {0, 0, 0}, {3, 3, 3}
-- number
elseif type(x) == "number" then
return new(x, x, x)
else
@ -66,16 +73,17 @@ function vec3.new(x, y, z)
end
--- Clone a vector.
-- @tparam vec3 a vector to be cloned
-- @tparam vec3 a Vector to be cloned
-- @treturn vec3
function vec3.clone(a)
return new(a.x, a.y, a.z)
end
--- Add two vectors.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn vec3
function vec3.add(out, a, b)
out.x = a.x + b.x
out.y = a.y + b.y
@ -84,9 +92,10 @@ function vec3.add(out, a, b)
end
--- Subtract one vector from another.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn vec3
function vec3.sub(out, a, b)
out.x = a.x - b.x
out.y = a.y - b.y
@ -95,9 +104,10 @@ function vec3.sub(out, a, b)
end
--- Multiply a vector by a scalar.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam number b Right hand operant
-- @treturn vec3
function vec3.mul(out, a, b)
out.x = a.x * b
out.y = a.y * b
@ -105,10 +115,11 @@ function vec3.mul(out, a, b)
return out
end
--- Divide a vector by a scakar.
-- @tparam vec3 out vector to store the result
--- Divide a vector by a scalar.
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam number b Right hand operant
-- @treturn vec3
function vec3.div(out, a, b)
out.x = a.x / b
out.y = a.y / b
@ -117,8 +128,9 @@ function vec3.div(out, a, b)
end
--- Get the normal of a vector.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 a vector to normalize
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Vector to normalize
-- @treturn vec3
function vec3.normalize(out, a)
local l = vec3.len(a)
out.x = a.x / l
@ -128,9 +140,10 @@ function vec3.normalize(out, a)
end
--- Trim a vector to a given length
-- @tparam vec3 out vector to store the result
-- @tparam vec3 a vector to be trimmed
-- @tparam number len the length to trim the vector to
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Vector to be trimmed
-- @tparam number len Length to trim the vector to
-- @treturn vec3
function vec3.trim(out, a, len)
return out
:normalize(a)
@ -138,9 +151,10 @@ function vec3.trim(out, a, len)
end
--- Get the cross product of two vectors.
-- @tparam vec3 out vector to store the result
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn vec3
function vec3.cross(out, a, b)
out.x = a.y * b.z - a.z * b.y
out.y = a.z * b.x - a.x * b.z
@ -157,22 +171,22 @@ function vec3.dot(a, b)
end
--- Get the length of a vector.
-- @tparam vec3 a vector to get the length of
-- @tparam vec3 a Vector to get the length of
-- @treturn number
function vec3.len(a)
return sqrt(a.x * a.x + a.y * a.y + a.z * a.z)
end
--- Get the squared length of a vector.
-- @tparam vec3 a vector to get the squared length of
-- @tparam vec3 a Vector to get the squared length of
-- @treturn number
function vec3.len2(a)
return a.x * a.x + a.y * a.y + a.z * a.z
end
--- Get the distance between two vectors.
-- @tparam vec3 a first vector
-- @tparam vec3 b second vector
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn number
function vec3.dist(a, b)
local dx = a.x - b.x
@ -182,8 +196,8 @@ function vec3.dist(a, b)
end
--- Get the squared distance between two vectors.
-- @tparam vec3 a first vector
-- @tparam vec3 b second vector
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @treturn number
function vec3.dist2(a, b)
local dx = a.x - b.x
@ -193,9 +207,11 @@ function vec3.dist2(a, b)
end
--- Rotate vector about an axis.
-- @param phi Amount to rotate, in radians
-- @param axis Axis to rotate by
-- @return vec3
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Vector to rotate
-- @tparam number phi Amount to rotate, in radians
-- @tparam vec3 axis Axis to rotate by
-- @treturn vec3
function vec3.rotate(out, a, phi, axis)
if not vec3.is_vec3(axis) then
return a
@ -224,10 +240,10 @@ function vec3.perpendicular(out, a)
end
--- Lerp between two vectors.
-- @tparam vec3 out vector for result to be stored in
-- @tparam vec3 a first vector
-- @tparam vec3 b second vector
-- @tparam number s step value
-- @tparam vec3 out Vector to store the result
-- @tparam vec3 a Left hand operant
-- @tparam vec3 b Right hand operant
-- @tparam number s Step value
-- @treturn vec3
function vec3.lerp(out, a, b, s)
return out
@ -236,17 +252,17 @@ function vec3.lerp(out, a, b, s)
:add(out, a)
end
--- Unpack a vector into form x,y,z
-- @tparam vec3 a first vector
-- @treturn number x component
-- @treturn number y component
-- @treturn number z component
--- Unpack a vector into individual components.
-- @tparam vec3 a Vector to unpack
-- @treturn number x x component
-- @treturn number y y component
-- @treturn number z z component
function vec3.unpack(a)
return a.x, a.y, a.z
end
--- Return a boolean showing if a table is or is not a vec3
-- @param v the object to be tested
--- Return a boolean showing if a table is or is not a vec3.
-- @tparam vec3 a Vector to be tested
-- @treturn boolean
function vec3.is_vec3(a)
if type(a) == "cdata" then
@ -260,6 +276,9 @@ function vec3.is_vec3(a)
type(a.z) == "number"
end
--- Return a boolean showing if a table is or is not a zero vec3.
-- @tparam vec3 a Vector to be tested
-- @treturn boolean
function vec3.is_zero(a)
return
a.x == 0 and
@ -267,8 +286,8 @@ function vec3.is_zero(a)
a.z == 0
end
--- Return a string formatted "{x, y, z}"
-- @tparam vec3 a the vector to be turned into a string
--- Return a formatted string.
-- @tparam vec3 a Vector to be turned into a string
-- @treturn string
function vec3.to_string(a)
return string.format("(%+0.3f,%+0.3f,%+0.3f)", a.x, a.y, a.z)