8853519d89
All the methods used should be compliant with C++14 constexpr rules. However, the number of scales and phases cause GenerateBSincCoeffs to reach the allowed step limit, preventing full compile-time generation. It's not a terribly big deal, it'll generate them very quickly when loading, but it does prevent using shared read-only memory pages.
220 lines
7.8 KiB
C++
220 lines
7.8 KiB
C++
#include "config.h"
|
|
|
|
#include <cassert>
|
|
|
|
#include <limits>
|
|
|
|
#include "alcmain.h"
|
|
#include "alu.h"
|
|
#include "bsinc_defs.h"
|
|
#include "defs.h"
|
|
#include "hrtfbase.h"
|
|
|
|
|
|
namespace {
|
|
|
|
inline float do_point(const InterpState&, const float *RESTRICT vals, const ALuint)
|
|
{ return vals[0]; }
|
|
inline float do_lerp(const InterpState&, const float *RESTRICT vals, const ALuint frac)
|
|
{ return lerp(vals[0], vals[1], static_cast<float>(frac)*(1.0f/FRACTIONONE)); }
|
|
inline float do_cubic(const InterpState&, const float *RESTRICT vals, const ALuint frac)
|
|
{ return cubic(vals[0], vals[1], vals[2], vals[3], static_cast<float>(frac)*(1.0f/FRACTIONONE)); }
|
|
inline float do_bsinc(const InterpState &istate, const float *RESTRICT vals, const ALuint frac)
|
|
{
|
|
const size_t m{istate.bsinc.m};
|
|
|
|
// Calculate the phase index and factor.
|
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
|
const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
|
|
const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
|
|
(1.0f/(1<<FRAC_PHASE_BITDIFF))};
|
|
#undef FRAC_PHASE_BITDIFF
|
|
|
|
const float *fil{istate.bsinc.filter + m*pi*4};
|
|
const float *phd{fil + m};
|
|
const float *scd{phd + m};
|
|
const float *spd{scd + m};
|
|
|
|
// Apply the scale and phase interpolated filter.
|
|
float r{0.0f};
|
|
for(size_t j_f{0};j_f < m;j_f++)
|
|
r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
|
|
return r;
|
|
}
|
|
inline float do_fastbsinc(const InterpState &istate, const float *RESTRICT vals, const ALuint frac)
|
|
{
|
|
const size_t m{istate.bsinc.m};
|
|
|
|
// Calculate the phase index and factor.
|
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
|
const ALuint pi{frac >> FRAC_PHASE_BITDIFF};
|
|
const float pf{static_cast<float>(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) *
|
|
(1.0f/(1<<FRAC_PHASE_BITDIFF))};
|
|
#undef FRAC_PHASE_BITDIFF
|
|
|
|
const float *fil{istate.bsinc.filter + m*pi*4};
|
|
const float *phd{fil + m};
|
|
|
|
// Apply the phase interpolated filter.
|
|
float r{0.0f};
|
|
for(size_t j_f{0};j_f < m;j_f++)
|
|
r += (fil[j_f] + pf*phd[j_f]) * vals[j_f];
|
|
return r;
|
|
}
|
|
|
|
using SamplerT = float(&)(const InterpState&, const float*RESTRICT, const ALuint);
|
|
template<SamplerT Sampler>
|
|
const float *DoResample(const InterpState *state, const float *RESTRICT src, ALuint frac,
|
|
ALuint increment, const al::span<float> dst)
|
|
{
|
|
const InterpState istate{*state};
|
|
auto proc_sample = [&src,&frac,istate,increment]() -> float
|
|
{
|
|
const float ret{Sampler(istate, src, frac)};
|
|
|
|
frac += increment;
|
|
src += frac>>FRACTIONBITS;
|
|
frac &= FRACTIONMASK;
|
|
|
|
return ret;
|
|
};
|
|
std::generate(dst.begin(), dst.end(), proc_sample);
|
|
|
|
return dst.begin();
|
|
}
|
|
|
|
inline void ApplyCoeffs(float2 *RESTRICT Values, const ALuint IrSize, const HrirArray &Coeffs,
|
|
const float left, const float right)
|
|
{
|
|
ASSUME(IrSize >= MIN_IR_LENGTH);
|
|
for(ALuint c{0};c < IrSize;++c)
|
|
{
|
|
Values[c][0] += Coeffs[c][0] * left;
|
|
Values[c][1] += Coeffs[c][1] * right;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template<>
|
|
const ALfloat *Resample_<CopyTag,CTag>(const InterpState*, const ALfloat *RESTRICT src, ALuint,
|
|
ALuint, const al::span<float> dst)
|
|
{
|
|
#if defined(HAVE_SSE) || defined(HAVE_NEON)
|
|
/* Avoid copying the source data if it's aligned like the destination. */
|
|
if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst.data())&15))
|
|
return src;
|
|
#endif
|
|
std::copy_n(src, dst.size(), dst.begin());
|
|
return dst.begin();
|
|
}
|
|
|
|
template<>
|
|
const ALfloat *Resample_<PointTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{ return DoResample<do_point>(state, src, frac, increment, dst); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<LerpTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{ return DoResample<do_lerp>(state, src, frac, increment, dst); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<CubicTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{ return DoResample<do_cubic>(state, src-1, frac, increment, dst); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<BSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<FastBSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALuint frac, ALuint increment, const al::span<float> dst)
|
|
{ return DoResample<do_fastbsinc>(state, src-state->bsinc.l, frac, increment, dst); }
|
|
|
|
|
|
template<>
|
|
void MixHrtf_<CTag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
|
|
const MixHrtfFilter *hrtfparams, const size_t BufferSize)
|
|
{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
|
|
|
|
template<>
|
|
void MixHrtfBlend_<CTag>(const float *InSamples, float2 *AccumSamples, const ALuint IrSize,
|
|
const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
|
|
{
|
|
MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
|
|
BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixDirectHrtf_<CTag>(FloatBufferLine &LeftOut, FloatBufferLine &RightOut,
|
|
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, DirectHrtfState *State,
|
|
const size_t BufferSize)
|
|
{ MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, State, BufferSize); }
|
|
|
|
|
|
template<>
|
|
void Mix_<CTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
|
|
float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
|
|
{
|
|
const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
|
|
const bool reached_target{InSamples.size() >= Counter};
|
|
const auto min_end = reached_target ? InSamples.begin() + Counter : InSamples.end();
|
|
for(FloatBufferLine &output : OutBuffer)
|
|
{
|
|
ALfloat *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
|
|
ALfloat gain{*CurrentGains};
|
|
const ALfloat diff{*TargetGains - gain};
|
|
|
|
auto in_iter = InSamples.begin();
|
|
if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
|
|
{
|
|
const ALfloat step{diff * delta};
|
|
ALfloat step_count{0.0f};
|
|
while(in_iter != min_end)
|
|
{
|
|
*(dst++) += *(in_iter++) * (gain + step*step_count);
|
|
step_count += 1.0f;
|
|
}
|
|
if(reached_target)
|
|
gain = *TargetGains;
|
|
else
|
|
gain += step*step_count;
|
|
*CurrentGains = gain;
|
|
}
|
|
++CurrentGains;
|
|
++TargetGains;
|
|
|
|
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
while(in_iter != InSamples.end())
|
|
*(dst++) += *(in_iter++) * gain;
|
|
}
|
|
}
|
|
|
|
/* Basically the inverse of the above. Rather than one input going to multiple
|
|
* outputs (each with its own gain), it's multiple inputs (each with its own
|
|
* gain) going to one output. This applies one row (vs one column) of a matrix
|
|
* transform. And as the matrices are more or less static once set up, no
|
|
* stepping is necessary.
|
|
*/
|
|
template<>
|
|
void MixRow_<CTag>(const al::span<float> OutBuffer, const al::span<const float> Gains,
|
|
const float *InSamples, const size_t InStride)
|
|
{
|
|
for(const float gain : Gains)
|
|
{
|
|
const float *RESTRICT input{InSamples};
|
|
InSamples += InStride;
|
|
|
|
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
|
|
auto do_mix = [gain](const float cur, const float src) noexcept -> float
|
|
{ return cur + src*gain; };
|
|
std::transform(OutBuffer.begin(), OutBuffer.end(), input, OutBuffer.begin(), do_mix);
|
|
}
|
|
}
|