openal-soft/alc/effects/vmorpher.cpp
2020-04-16 17:29:32 -07:00

437 lines
16 KiB
C++

/**
* OpenAL cross platform audio library
* Copyright (C) 2019 by Anis A. Hireche
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <functional>
#include "al/auxeffectslot.h"
#include "alcmain.h"
#include "alcontext.h"
#include "alu.h"
namespace {
#define MAX_UPDATE_SAMPLES 128
#define NUM_FORMANTS 4
#define NUM_FILTERS 2
#define Q_FACTOR 5.0f
#define VOWEL_A_INDEX 0
#define VOWEL_B_INDEX 1
#define WAVEFORM_FRACBITS 24
#define WAVEFORM_FRACONE (1<<WAVEFORM_FRACBITS)
#define WAVEFORM_FRACMASK (WAVEFORM_FRACONE-1)
inline float Sin(ALuint index)
{
constexpr float scale{al::MathDefs<float>::Tau() / WAVEFORM_FRACONE};
return std::sin(static_cast<float>(index) * scale)*0.5f + 0.5f;
}
inline float Saw(ALuint index)
{ return static_cast<float>(index) / float{WAVEFORM_FRACONE}; }
inline float Triangle(ALuint index)
{ return std::fabs(static_cast<float>(index)*(2.0f/WAVEFORM_FRACONE) - 1.0f); }
inline float Half(ALuint) { return 0.5f; }
template<float (&func)(ALuint)>
void Oscillate(float *RESTRICT dst, ALuint index, const ALuint step, size_t todo)
{
for(size_t i{0u};i < todo;i++)
{
index += step;
index &= WAVEFORM_FRACMASK;
dst[i] = func(index);
}
}
struct FormantFilter
{
float mCoeff{0.0f};
float mGain{1.0f};
float mS1{0.0f};
float mS2{0.0f};
FormantFilter() = default;
FormantFilter(float f0norm, float gain)
: mCoeff{std::tan(al::MathDefs<float>::Pi() * f0norm)}, mGain{gain}
{ }
inline void process(const float *samplesIn, float *samplesOut, const size_t numInput)
{
/* A state variable filter from a topology-preserving transform.
* Based on a talk given by Ivan Cohen: https://www.youtube.com/watch?v=esjHXGPyrhg
*/
const float g{mCoeff};
const float gain{mGain};
const float h{1.0f / (1.0f + (g/Q_FACTOR) + (g*g))};
float s1{mS1};
float s2{mS2};
for(size_t i{0u};i < numInput;i++)
{
const float H{(samplesIn[i] - (1.0f/Q_FACTOR + g)*s1 - s2)*h};
const float B{g*H + s1};
const float L{g*B + s2};
s1 = g*H + B;
s2 = g*B + L;
// Apply peak and accumulate samples.
samplesOut[i] += B * gain;
}
mS1 = s1;
mS2 = s2;
}
inline void clear()
{
mS1 = 0.0f;
mS2 = 0.0f;
}
};
struct VmorpherState final : public EffectState {
struct {
/* Effect parameters */
FormantFilter Formants[NUM_FILTERS][NUM_FORMANTS];
/* Effect gains for each channel */
float CurrentGains[MAX_OUTPUT_CHANNELS]{};
float TargetGains[MAX_OUTPUT_CHANNELS]{};
} mChans[MAX_AMBI_CHANNELS];
void (*mGetSamples)(float*RESTRICT, ALuint, const ALuint, size_t){};
ALuint mIndex{0};
ALuint mStep{1};
/* Effects buffers */
float mSampleBufferA[MAX_UPDATE_SAMPLES]{};
float mSampleBufferB[MAX_UPDATE_SAMPLES]{};
void deviceUpdate(const ALCdevice *device) override;
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut) override;
static std::array<FormantFilter,4> getFiltersByPhoneme(ALenum phoneme, float frequency, float pitch);
DEF_NEWDEL(VmorpherState)
};
std::array<FormantFilter,4> VmorpherState::getFiltersByPhoneme(ALenum phoneme, float frequency, float pitch)
{
/* Using soprano formant set of values to
* better match mid-range frequency space.
*
* See: https://www.classes.cs.uchicago.edu/archive/1999/spring/CS295/Computing_Resources/Csound/CsManual3.48b1.HTML/Appendices/table3.html
*/
switch(phoneme)
{
case AL_VOCAL_MORPHER_PHONEME_A:
return {{
{( 800 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */
{(1150 * pitch) / frequency, 0.501187f}, /* std::pow(10.0f, -6 / 20.0f); */
{(2900 * pitch) / frequency, 0.025118f}, /* std::pow(10.0f, -32 / 20.0f); */
{(3900 * pitch) / frequency, 0.100000f} /* std::pow(10.0f, -20 / 20.0f); */
}};
case AL_VOCAL_MORPHER_PHONEME_E:
return {{
{( 350 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */
{(2000 * pitch) / frequency, 0.100000f}, /* std::pow(10.0f, -20 / 20.0f); */
{(2800 * pitch) / frequency, 0.177827f}, /* std::pow(10.0f, -15 / 20.0f); */
{(3600 * pitch) / frequency, 0.009999f} /* std::pow(10.0f, -40 / 20.0f); */
}};
case AL_VOCAL_MORPHER_PHONEME_I:
return {{
{( 270 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */
{(2140 * pitch) / frequency, 0.251188f}, /* std::pow(10.0f, -12 / 20.0f); */
{(2950 * pitch) / frequency, 0.050118f}, /* std::pow(10.0f, -26 / 20.0f); */
{(3900 * pitch) / frequency, 0.050118f} /* std::pow(10.0f, -26 / 20.0f); */
}};
case AL_VOCAL_MORPHER_PHONEME_O:
return {{
{( 450 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */
{( 800 * pitch) / frequency, 0.281838f}, /* std::pow(10.0f, -11 / 20.0f); */
{(2830 * pitch) / frequency, 0.079432f}, /* std::pow(10.0f, -22 / 20.0f); */
{(3800 * pitch) / frequency, 0.079432f} /* std::pow(10.0f, -22 / 20.0f); */
}};
case AL_VOCAL_MORPHER_PHONEME_U:
return {{
{( 325 * pitch) / frequency, 1.000000f}, /* std::pow(10.0f, 0 / 20.0f); */
{( 700 * pitch) / frequency, 0.158489f}, /* std::pow(10.0f, -16 / 20.0f); */
{(2700 * pitch) / frequency, 0.017782f}, /* std::pow(10.0f, -35 / 20.0f); */
{(3800 * pitch) / frequency, 0.009999f} /* std::pow(10.0f, -40 / 20.0f); */
}};
}
return {};
}
void VmorpherState::deviceUpdate(const ALCdevice* /*device*/)
{
for(auto &e : mChans)
{
std::for_each(std::begin(e.Formants[VOWEL_A_INDEX]), std::end(e.Formants[VOWEL_A_INDEX]),
std::mem_fn(&FormantFilter::clear));
std::for_each(std::begin(e.Formants[VOWEL_B_INDEX]), std::end(e.Formants[VOWEL_B_INDEX]),
std::mem_fn(&FormantFilter::clear));
std::fill(std::begin(e.CurrentGains), std::end(e.CurrentGains), 0.0f);
}
}
void VmorpherState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target)
{
const ALCdevice *device{context->mDevice.get()};
const float frequency{static_cast<float>(device->Frequency)};
const float step{props->Vmorpher.Rate / frequency};
mStep = fastf2u(clampf(step*WAVEFORM_FRACONE, 0.0f, float{WAVEFORM_FRACONE-1}));
if(mStep == 0)
mGetSamples = Oscillate<Half>;
else if(props->Vmorpher.Waveform == AL_VOCAL_MORPHER_WAVEFORM_SINUSOID)
mGetSamples = Oscillate<Sin>;
else if(props->Vmorpher.Waveform == AL_VOCAL_MORPHER_WAVEFORM_SAWTOOTH)
mGetSamples = Oscillate<Saw>;
else /*if(props->Vmorpher.Waveform == AL_VOCAL_MORPHER_WAVEFORM_TRIANGLE)*/
mGetSamples = Oscillate<Triangle>;
const float pitchA{std::pow(2.0f,
static_cast<float>(props->Vmorpher.PhonemeACoarseTuning) / 12.0f)};
const float pitchB{std::pow(2.0f,
static_cast<float>(props->Vmorpher.PhonemeBCoarseTuning) / 12.0f)};
auto vowelA = getFiltersByPhoneme(props->Vmorpher.PhonemeA, frequency, pitchA);
auto vowelB = getFiltersByPhoneme(props->Vmorpher.PhonemeB, frequency, pitchB);
/* Copy the filter coefficients to the input channels. */
for(size_t i{0u};i < slot->Wet.Buffer.size();++i)
{
std::copy(vowelA.begin(), vowelA.end(), std::begin(mChans[i].Formants[VOWEL_A_INDEX]));
std::copy(vowelB.begin(), vowelB.end(), std::begin(mChans[i].Formants[VOWEL_B_INDEX]));
}
mOutTarget = target.Main->Buffer;
for(size_t i{0u};i < slot->Wet.Buffer.size();++i)
{
auto coeffs = GetAmbiIdentityRow(i);
ComputePanGains(target.Main, coeffs.data(), slot->Params.Gain, mChans[i].TargetGains);
}
}
void VmorpherState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
{
/* Following the EFX specification for a conformant implementation which describes
* the effect as a pair of 4-band formant filters blended together using an LFO.
*/
for(size_t base{0u};base < samplesToDo;)
{
alignas(16) float lfo[MAX_UPDATE_SAMPLES];
const size_t td{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)};
mGetSamples(lfo, mIndex, mStep, td);
mIndex += static_cast<ALuint>(mStep * td);
mIndex &= WAVEFORM_FRACMASK;
auto chandata = std::addressof(mChans[0]);
for(const auto &input : samplesIn)
{
std::fill_n(std::begin(mSampleBufferA), td, 0.0f);
std::fill_n(std::begin(mSampleBufferB), td, 0.0f);
auto& vowelA = chandata->Formants[VOWEL_A_INDEX];
auto& vowelB = chandata->Formants[VOWEL_B_INDEX];
/* Process first vowel. */
vowelA[0].process(&input[base], mSampleBufferA, td);
vowelA[1].process(&input[base], mSampleBufferA, td);
vowelA[2].process(&input[base], mSampleBufferA, td);
vowelA[3].process(&input[base], mSampleBufferA, td);
/* Process second vowel. */
vowelB[0].process(&input[base], mSampleBufferB, td);
vowelB[1].process(&input[base], mSampleBufferB, td);
vowelB[2].process(&input[base], mSampleBufferB, td);
vowelB[3].process(&input[base], mSampleBufferB, td);
alignas(16) float blended[MAX_UPDATE_SAMPLES];
for(size_t i{0u};i < td;i++)
blended[i] = lerp(mSampleBufferA[i], mSampleBufferB[i], lfo[i]);
/* Now, mix the processed sound data to the output. */
MixSamples({blended, td}, samplesOut, chandata->CurrentGains, chandata->TargetGains,
samplesToDo-base, base);
++chandata;
}
base += td;
}
}
void Vmorpher_setParami(EffectProps *props, ALenum param, int val)
{
switch(param)
{
case AL_VOCAL_MORPHER_WAVEFORM:
if(!(val >= AL_VOCAL_MORPHER_MIN_WAVEFORM && val <= AL_VOCAL_MORPHER_MAX_WAVEFORM))
throw effect_exception{AL_INVALID_VALUE, "Vocal morpher waveform out of range"};
props->Vmorpher.Waveform = val;
break;
case AL_VOCAL_MORPHER_PHONEMEA:
if(!(val >= AL_VOCAL_MORPHER_MIN_PHONEMEA && val <= AL_VOCAL_MORPHER_MAX_PHONEMEA))
throw effect_exception{AL_INVALID_VALUE, "Vocal morpher phoneme-a out of range"};
props->Vmorpher.PhonemeA = val;
break;
case AL_VOCAL_MORPHER_PHONEMEB:
if(!(val >= AL_VOCAL_MORPHER_MIN_PHONEMEB && val <= AL_VOCAL_MORPHER_MAX_PHONEMEB))
throw effect_exception{AL_INVALID_VALUE, "Vocal morpher phoneme-b out of range"};
props->Vmorpher.PhonemeB = val;
break;
case AL_VOCAL_MORPHER_PHONEMEA_COARSE_TUNING:
if(!(val >= AL_VOCAL_MORPHER_MIN_PHONEMEA_COARSE_TUNING && val <= AL_VOCAL_MORPHER_MAX_PHONEMEA_COARSE_TUNING))
throw effect_exception{AL_INVALID_VALUE, "Vocal morpher phoneme-a coarse tuning out of range"};
props->Vmorpher.PhonemeACoarseTuning = val;
break;
case AL_VOCAL_MORPHER_PHONEMEB_COARSE_TUNING:
if(!(val >= AL_VOCAL_MORPHER_MIN_PHONEMEB_COARSE_TUNING && val <= AL_VOCAL_MORPHER_MAX_PHONEMEB_COARSE_TUNING))
throw effect_exception{AL_INVALID_VALUE, "Vocal morpher phoneme-b coarse tuning out of range"};
props->Vmorpher.PhonemeBCoarseTuning = val;
break;
default:
throw effect_exception{AL_INVALID_ENUM, "Invalid vocal morpher integer property 0x%04x",
param};
}
}
void Vmorpher_setParamiv(EffectProps*, ALenum param, const int*)
{
throw effect_exception{AL_INVALID_ENUM, "Invalid vocal morpher integer-vector property 0x%04x",
param};
}
void Vmorpher_setParamf(EffectProps *props, ALenum param, float val)
{
switch(param)
{
case AL_VOCAL_MORPHER_RATE:
if(!(val >= AL_VOCAL_MORPHER_MIN_RATE && val <= AL_VOCAL_MORPHER_MAX_RATE))
throw effect_exception{AL_INVALID_VALUE, "Vocal morpher rate out of range"};
props->Vmorpher.Rate = val;
break;
default:
throw effect_exception{AL_INVALID_ENUM, "Invalid vocal morpher float property 0x%04x",
param};
}
}
void Vmorpher_setParamfv(EffectProps *props, ALenum param, const float *vals)
{ Vmorpher_setParamf(props, param, vals[0]); }
void Vmorpher_getParami(const EffectProps *props, ALenum param, int* val)
{
switch(param)
{
case AL_VOCAL_MORPHER_PHONEMEA:
*val = props->Vmorpher.PhonemeA;
break;
case AL_VOCAL_MORPHER_PHONEMEB:
*val = props->Vmorpher.PhonemeB;
break;
case AL_VOCAL_MORPHER_PHONEMEA_COARSE_TUNING:
*val = props->Vmorpher.PhonemeACoarseTuning;
break;
case AL_VOCAL_MORPHER_PHONEMEB_COARSE_TUNING:
*val = props->Vmorpher.PhonemeBCoarseTuning;
break;
case AL_VOCAL_MORPHER_WAVEFORM:
*val = props->Vmorpher.Waveform;
break;
default:
throw effect_exception{AL_INVALID_ENUM, "Invalid vocal morpher integer property 0x%04x",
param};
}
}
void Vmorpher_getParamiv(const EffectProps*, ALenum param, int*)
{
throw effect_exception{AL_INVALID_ENUM, "Invalid vocal morpher integer-vector property 0x%04x",
param};
}
void Vmorpher_getParamf(const EffectProps *props, ALenum param, float *val)
{
switch(param)
{
case AL_VOCAL_MORPHER_RATE:
*val = props->Vmorpher.Rate;
break;
default:
throw effect_exception{AL_INVALID_ENUM, "Invalid vocal morpher float property 0x%04x",
param};
}
}
void Vmorpher_getParamfv(const EffectProps *props, ALenum param, float *vals)
{ Vmorpher_getParamf(props, param, vals); }
DEFINE_ALEFFECT_VTABLE(Vmorpher);
struct VmorpherStateFactory final : public EffectStateFactory {
EffectState *create() override { return new VmorpherState{}; }
EffectProps getDefaultProps() const noexcept override;
const EffectVtable *getEffectVtable() const noexcept override { return &Vmorpher_vtable; }
};
EffectProps VmorpherStateFactory::getDefaultProps() const noexcept
{
EffectProps props{};
props.Vmorpher.Rate = AL_VOCAL_MORPHER_DEFAULT_RATE;
props.Vmorpher.PhonemeA = AL_VOCAL_MORPHER_DEFAULT_PHONEMEA;
props.Vmorpher.PhonemeB = AL_VOCAL_MORPHER_DEFAULT_PHONEMEB;
props.Vmorpher.PhonemeACoarseTuning = AL_VOCAL_MORPHER_DEFAULT_PHONEMEA_COARSE_TUNING;
props.Vmorpher.PhonemeBCoarseTuning = AL_VOCAL_MORPHER_DEFAULT_PHONEMEB_COARSE_TUNING;
props.Vmorpher.Waveform = AL_VOCAL_MORPHER_DEFAULT_WAVEFORM;
return props;
}
} // namespace
EffectStateFactory *VmorpherStateFactory_getFactory()
{
static VmorpherStateFactory VmorpherFactory{};
return &VmorpherFactory;
}