Generate the bsinc tables using constexpr methods

All the methods used should be compliant with C++14 constexpr rules. However,
the number of scales and phases cause GenerateBSincCoeffs to reach the allowed
step limit, preventing full compile-time generation. It's not a terribly big
deal, it'll generate them very quickly when loading, but it does prevent using
shared read-only memory pages.
This commit is contained in:
Chris Robinson 2020-04-01 23:17:46 -07:00
parent 6fb59f1182
commit 8853519d89
9 changed files with 380 additions and 12 deletions

View File

@ -545,6 +545,9 @@ SET(COMMON_OBJS
common/alstring.cpp
common/alstring.h
common/atomic.h
common/bsinc_defs.h
common/bsinc_tables.cpp
common/bsinc_tables.h
common/dynload.cpp
common/dynload.h
common/endiantest.h

View File

@ -80,10 +80,10 @@
#include "vecmat.h"
#include "voice.h"
#include "bsinc_inc.h"
#include "bsinc_tables.h"
static_assert(!(MAX_RESAMPLER_PADDING&1) && MAX_RESAMPLER_PADDING >= bsinc24.m[0],
static_assert(!(MAX_RESAMPLER_PADDING&1) && MAX_RESAMPLER_PADDING >= BSINC_POINTS_MAX,
"MAX_RESAMPLER_PADDING is not a multiple of two, or is too small");

View File

@ -6,7 +6,7 @@
#include "alcmain.h"
#include "alu.h"
#include "bsinc_defs.h"
#include "defs.h"
#include "hrtfbase.h"

View File

@ -10,6 +10,7 @@
#include "alu.h"
#include "hrtf.h"
#include "defs.h"
#include "bsinc_defs.h"
#include "hrtfbase.h"

View File

@ -9,6 +9,7 @@
#include "alcmain.h"
#include "alu.h"
#include "bsinc_defs.h"
#include "defs.h"
#include "hrtfbase.h"

View File

@ -44,13 +44,6 @@ enum class Resampler {
};
extern Resampler ResamplerDefault;
/* The number of distinct scale and phase intervals within the bsinc filter
* table.
*/
#define BSINC_SCALE_BITS 4
#define BSINC_SCALE_COUNT (1<<BSINC_SCALE_BITS)
#define BSINC_PHASE_BITS 5
#define BSINC_PHASE_COUNT (1<<BSINC_PHASE_BITS)
/* Interpolator state. Kind of a misnomer since the interpolator itself is
* stateless. This just keeps it from having to recompute scale-related

13
common/bsinc_defs.h Normal file
View File

@ -0,0 +1,13 @@
#ifndef BSINC_DEFS_H
#define BSINC_DEFS_H
/* The number of distinct scale and phase intervals within the filter table. */
#define BSINC_SCALE_BITS 4
#define BSINC_SCALE_COUNT (1<<BSINC_SCALE_BITS)
#define BSINC_PHASE_BITS 5
#define BSINC_PHASE_COUNT (1<<BSINC_PHASE_BITS)
/* The maximum number of sample points for the bsinc filters. */
#define BSINC_POINTS_MAX 48
#endif /* BSINC_DEFS_H */

340
common/bsinc_tables.cpp Normal file
View File

@ -0,0 +1,340 @@
#include "bsinc_tables.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <limits>
#include <stdexcept>
#include "math_defs.h"
#include "vector.h"
namespace {
/* The max points includes the doubling for downsampling, so the maximum number
* of base sample points is 24, which is 23rd order.
*/
constexpr int BSincPointsMax{BSINC_POINTS_MAX};
constexpr int BSincPointsHalf{BSincPointsMax / 2};
constexpr int BSincPhaseCount{BSINC_PHASE_COUNT};
constexpr int BSincScaleCount{BSINC_SCALE_COUNT};
template<typename T>
constexpr std::enable_if_t<std::is_floating_point<T>::value,T> sqrt(T x)
{
if(!(x >= 0 && x < std::numeric_limits<double>::infinity()))
throw std::domain_error{"Invalid sqrt value"};
T cur{x}, prev{0};
while(cur != prev)
{
prev = cur;
cur = 0.5f*(cur + x/cur);
}
return cur;
}
template<typename T>
constexpr std::enable_if_t<std::is_floating_point<T>::value,T> sin(T x)
{
if(x >= al::MathDefs<T>::Tau())
{
if(!(x < 65536))
throw std::domain_error{"Invalid sin value"};
do {
x -= al::MathDefs<T>::Tau();
} while(x >= al::MathDefs<T>::Tau());
}
else if(x < 0)
{
if(!(x > -65536))
throw std::domain_error{"Invalid sin value"};
do {
x += al::MathDefs<T>::Tau();
} while(x < 0);
}
T prev{x}, n{6};
int i{4}, s{-1};
const T xx{x*x};
T t{xx*x};
T cur{prev + t*s/n};
while(prev != cur)
{
prev = cur;
n *= i*(i+1);
i += 2;
s = -s;
t *= xx;
cur += t*s/n;
}
return cur;
}
/* This is the normalized cardinal sine (sinc) function.
*
* sinc(x) = { 1, x = 0
* { sin(pi x) / (pi x), otherwise.
*/
constexpr double Sinc(const double x)
{
if(std::abs(x) < 1e-15)
return 1.0;
return sin(al::MathDefs<double>::Pi()*x) / (al::MathDefs<double>::Pi()*x);
}
/* The zero-order modified Bessel function of the first kind, used for the
* Kaiser window.
*
* I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
* = sum_{k=0}^inf ((x / 2)^k / k!)^2
*/
constexpr double BesselI_0(const double x)
{
/* Start at k=1 since k=0 is trivial. */
const double x2{x / 2.0};
double term{1.0};
double sum{1.0};
double last_sum{};
int k{1};
/* Let the integration converge until the term of the sum is no longer
* significant.
*/
do {
const double y{x2 / k};
++k;
last_sum = sum;
term *= y * y;
sum += term;
} while(sum != last_sum);
return sum;
}
/* Calculate a Kaiser window from the given beta value and a normalized k
* [-1, 1].
*
* w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
* { 0, elsewhere.
*
* Where k can be calculated as:
*
* k = i / l, where -l <= i <= l.
*
* or:
*
* k = 2 i / M - 1, where 0 <= i <= M.
*/
constexpr double Kaiser(const double beta, const double k, const double besseli_0_beta)
{
if(!(k >= -1.0 && k <= 1.0))
return 0.0;
return BesselI_0(beta * sqrt(1.0 - k*k)) / besseli_0_beta;
}
/* Calculates the (normalized frequency) transition width of the Kaiser window.
* Rejection is in dB.
*/
constexpr double CalcKaiserWidth(const double rejection, const int order)
{
if(rejection > 21.19)
return (rejection - 7.95) / (order * 2.285 * al::MathDefs<double>::Tau());
/* This enforces a minimum rejection of just above 21.18dB */
return 5.79 / (order * al::MathDefs<double>::Tau());
}
/* Calculates the beta value of the Kaiser window. Rejection is in dB. */
constexpr double CalcKaiserBeta(const double rejection)
{
if(rejection > 50.0)
return 0.1102 * (rejection-8.7);
else if(rejection >= 21.0)
return (0.5842 * std::pow(rejection-21.0, 0.4)) + (0.07886 * (rejection-21.0));
return 0.0;
}
struct BSincHeader {
double width;
double beta;
double scaleBase;
double scaleRange;
double besseli_0_beta;
int a[BSINC_SCALE_COUNT];
int total_size;
};
constexpr BSincHeader GenerateBSincHeader(int Rejection, int Order)
{
BSincHeader ret{};
ret.width = CalcKaiserWidth(Rejection, Order);
ret.beta = CalcKaiserBeta(Rejection);
ret.scaleBase = ret.width / 2.0;
ret.scaleRange = 1.0 - ret.scaleBase;
ret.besseli_0_beta = BesselI_0(ret.beta);
int num_points{Order+1};
for(int si{0};si < BSincScaleCount;++si)
{
const double scale{ret.scaleBase + (ret.scaleRange * si / (BSincScaleCount - 1))};
const int a{std::min(static_cast<int>(num_points / 2.0 / scale), num_points)};
const int m{2 * a};
ret.a[si] = a;
ret.total_size += 4 * BSincPhaseCount * ((m+3) & ~3);
}
return ret;
}
/* 11th and 23rd order filters (12 and 24-point respectively) with a 60dB drop
* at nyquist. Each filter will scale up the order when downsampling, to 23 and
* 47th order respectively.
*/
constexpr BSincHeader bsinc12_hdr{GenerateBSincHeader(60, 11)};
constexpr BSincHeader bsinc24_hdr{GenerateBSincHeader(60, 23)};
/* std::array is missing constexpr for several methods. */
template<typename T, size_t N>
struct Array {
T data[N];
};
template<size_t total_size>
constexpr auto GenerateBSincCoeffs(const BSincHeader hdr)
{
double filter[BSincScaleCount][BSincPhaseCount+1][BSincPointsMax]{};
double phDeltas[BSincScaleCount][BSincPhaseCount ][BSincPointsMax]{};
double scDeltas[BSincScaleCount][BSincPhaseCount ][BSincPointsMax]{};
double spDeltas[BSincScaleCount][BSincPhaseCount ][BSincPointsMax]{};
/* Calculate the Kaiser-windowed Sinc filter coefficients for each scale
* and phase.
*/
for(unsigned int si{0};si < BSincScaleCount;++si)
{
const int m{hdr.a[si] * 2};
const int o{BSincPointsHalf - (m/2)};
const int l{hdr.a[si] - 1};
const int a{hdr.a[si]};
const double scale{hdr.scaleBase + (hdr.scaleRange * si / (BSincScaleCount - 1))};
const double cutoff{scale - (hdr.scaleBase * std::max(0.5, scale) * 2.0)};
for(int pi{0};pi <= BSincPhaseCount;++pi)
{
const double phase{l + (pi/double{BSincPhaseCount})};
for(int i{0};i < m;++i)
{
const double x{i - phase};
filter[si][pi][o + i] = Kaiser(hdr.beta, x/a, hdr.besseli_0_beta) * cutoff *
Sinc(cutoff*x);
}
}
}
/* Linear interpolation between phases is simplified by pre-calculating the
* delta (b - a) in: x = a + f (b - a)
*/
for(unsigned int si{0};si < BSincScaleCount;++si)
{
const int m{hdr.a[si] * 2};
const int o{BSincPointsHalf - (m/2)};
for(int pi{0};pi < BSincPhaseCount;++pi)
{
for(int i{0};i < m;++i)
phDeltas[si][pi][o + i] = filter[si][pi + 1][o + i] - filter[si][pi][o + i];
}
}
/* Linear interpolation between scales is also simplified.
*
* Given a difference in points between scales, the destination points will
* be 0, thus: x = a + f (-a)
*/
for(unsigned int si{0};si < (BSincScaleCount-1);++si)
{
const int m{hdr.a[si] * 2};
const int o{BSincPointsHalf - (m/2)};
for(int pi{0};pi < BSincPhaseCount;++pi)
{
for(int i{0};i < m;++i)
scDeltas[si][pi][o + i] = filter[si + 1][pi][o + i] - filter[si][pi][o + i];
}
}
/* This last simplification is done to complete the bilinear equation for
* the combination of phase and scale.
*/
for(unsigned int si{0};si < (BSincScaleCount-1);++si)
{
const int m{hdr.a[si] * 2};
const int o{BSincPointsHalf - (m/2)};
for(int pi{0};pi < BSincPhaseCount;++pi)
{
for(int i{0};i < m;++i)
spDeltas[si][pi][o + i] = phDeltas[si + 1][pi][o + i] - phDeltas[si][pi][o + i];
}
}
Array<float,total_size> ret{};
size_t idx{0};
for(unsigned int si{0};si < BSincScaleCount;++si)
{
const int m{((hdr.a[si]*2) + 3) & ~3};
const int o{BSincPointsHalf - (m/2)};
for(int pi{0};pi < BSincPhaseCount;++pi)
{
for(int i{0};i < m;++i)
ret.data[idx++] = static_cast<float>(filter[si][pi][o + i]);
for(int i{0};i < m;++i)
ret.data[idx++] = static_cast<float>(phDeltas[si][pi][o + i]);
for(int i{0};i < m;++i)
ret.data[idx++] = static_cast<float>(scDeltas[si][pi][o + i]);
for(int i{0};i < m;++i)
ret.data[idx++] = static_cast<float>(spDeltas[si][pi][o + i]);
}
}
assert(idx == total_size);
return ret;
}
/* FIXME: These can't be constexpr due to reaching the step limit. */
const auto bsinc12_table = GenerateBSincCoeffs<bsinc12_hdr.total_size>(bsinc12_hdr);
const auto bsinc24_table = GenerateBSincCoeffs<bsinc24_hdr.total_size>(bsinc24_hdr);
constexpr BSincTable GenerateBSincTable(const BSincHeader hdr, const float *tab)
{
BSincTable ret{};
ret.scaleBase = static_cast<float>(hdr.scaleBase);
ret.scaleRange = static_cast<float>(1.0 / hdr.scaleRange);
for(int i{0};i < BSincScaleCount;++i)
ret.m[i] = static_cast<unsigned int>(((hdr.a[i]*2) + 3) & ~3);
ret.filterOffset[0] = 0;
for(int i{1};i < BSincScaleCount;++i)
ret.filterOffset[i] = ret.filterOffset[i-1] + ret.m[i-1];
ret.Tab = tab;
return ret;
}
} // namespace
const BSincTable bsinc12{GenerateBSincTable(bsinc12_hdr, bsinc12_table.data)};
const BSincTable bsinc24{GenerateBSincTable(bsinc24_hdr, bsinc24_table.data)};

17
common/bsinc_tables.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef BSINC_TABLES_H
#define BSINC_TABLES_H
#include "bsinc_defs.h"
struct BSincTable {
float scaleBase, scaleRange;
unsigned int m[BSINC_SCALE_COUNT];
unsigned int filterOffset[BSINC_SCALE_COUNT];
const float *Tab;
};
extern const BSincTable bsinc12;
extern const BSincTable bsinc24;
#endif /* BSINC_TABLES_H */