2018-05-15 18:31:41 -07:00
|
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
|
|
|
|
|
#include "alcomplex.h"
|
2018-05-15 18:50:32 -07:00
|
|
|
|
#include "math_defs.h"
|
2018-05-15 18:31:41 -07:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extern inline ALcomplex complex_add(ALcomplex a, ALcomplex b);
|
|
|
|
|
extern inline ALcomplex complex_sub(ALcomplex a, ALcomplex b);
|
|
|
|
|
extern inline ALcomplex complex_mult(ALcomplex a, ALcomplex b);
|
|
|
|
|
|
|
|
|
|
void complex_fft(ALcomplex *FFTBuffer, ALsizei FFTSize, ALdouble Sign)
|
|
|
|
|
{
|
|
|
|
|
ALsizei i, j, k, mask, step, step2;
|
|
|
|
|
ALcomplex temp, u, w;
|
|
|
|
|
ALdouble arg;
|
|
|
|
|
|
|
|
|
|
/* Bit-reversal permutation applied to a sequence of FFTSize items */
|
|
|
|
|
for(i = 1;i < FFTSize-1;i++)
|
|
|
|
|
{
|
|
|
|
|
for(mask = 0x1, j = 0;mask < FFTSize;mask <<= 1)
|
|
|
|
|
{
|
|
|
|
|
if((i&mask) != 0)
|
|
|
|
|
j++;
|
|
|
|
|
j <<= 1;
|
|
|
|
|
}
|
|
|
|
|
j >>= 1;
|
|
|
|
|
|
|
|
|
|
if(i < j)
|
|
|
|
|
{
|
|
|
|
|
temp = FFTBuffer[i];
|
|
|
|
|
FFTBuffer[i] = FFTBuffer[j];
|
|
|
|
|
FFTBuffer[j] = temp;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Iterative form of DanielsonLanczos lemma */
|
|
|
|
|
for(i = 1, step = 2;i < FFTSize;i<<=1, step<<=1)
|
|
|
|
|
{
|
|
|
|
|
step2 = step >> 1;
|
|
|
|
|
arg = M_PI / step2;
|
|
|
|
|
|
|
|
|
|
w.Real = cos(arg);
|
|
|
|
|
w.Imag = sin(arg) * Sign;
|
|
|
|
|
|
|
|
|
|
u.Real = 1.0;
|
|
|
|
|
u.Imag = 0.0;
|
|
|
|
|
|
|
|
|
|
for(j = 0;j < step2;j++)
|
|
|
|
|
{
|
|
|
|
|
for(k = j;k < FFTSize;k+=step)
|
|
|
|
|
{
|
|
|
|
|
temp = complex_mult(FFTBuffer[k+step2], u);
|
|
|
|
|
FFTBuffer[k+step2] = complex_sub(FFTBuffer[k], temp);
|
|
|
|
|
FFTBuffer[k] = complex_add(FFTBuffer[k], temp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u = complex_mult(u, w);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2018-05-20 17:21:50 +02:00
|
|
|
|
|
2018-05-24 00:16:50 -07:00
|
|
|
|
void complex_hilbert(ALcomplex *Buffer, ALsizei size)
|
|
|
|
|
{
|
|
|
|
|
const ALdouble inverse_size = 1.0/(ALdouble)size;
|
|
|
|
|
ALsizei todo, i;
|
|
|
|
|
|
|
|
|
|
for(i = 0;i < size;i++)
|
|
|
|
|
Buffer[i].Imag = 0.0;
|
|
|
|
|
|
|
|
|
|
complex_fft(Buffer, size, 1.0);
|
|
|
|
|
|
|
|
|
|
todo = size >> 1;
|
|
|
|
|
Buffer[0].Real *= inverse_size;
|
|
|
|
|
Buffer[0].Imag *= inverse_size;
|
|
|
|
|
for(i = 1;i < todo;i++)
|
|
|
|
|
{
|
|
|
|
|
Buffer[i].Real *= 2.0*inverse_size;
|
|
|
|
|
Buffer[i].Imag *= 2.0*inverse_size;
|
|
|
|
|
}
|
|
|
|
|
Buffer[i].Real *= inverse_size;
|
|
|
|
|
Buffer[i].Imag *= inverse_size;
|
|
|
|
|
i++;
|
|
|
|
|
|
|
|
|
|
for(;i < size;i++)
|
|
|
|
|
{
|
|
|
|
|
Buffer[i].Real = 0.0;
|
|
|
|
|
Buffer[i].Imag = 0.0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
complex_fft(Buffer, size, -1.0);
|
2018-05-20 17:21:50 +02:00
|
|
|
|
}
|