openal-soft/common/alcomplex.c

97 lines
2.3 KiB
C
Raw Normal View History

#include "config.h"
#include "alcomplex.h"
#include "math_defs.h"
extern inline ALcomplex complex_add(ALcomplex a, ALcomplex b);
extern inline ALcomplex complex_sub(ALcomplex a, ALcomplex b);
extern inline ALcomplex complex_mult(ALcomplex a, ALcomplex b);
void complex_fft(ALcomplex *FFTBuffer, ALsizei FFTSize, ALdouble Sign)
{
ALsizei i, j, k, mask, step, step2;
ALcomplex temp, u, w;
ALdouble arg;
/* Bit-reversal permutation applied to a sequence of FFTSize items */
for(i = 1;i < FFTSize-1;i++)
{
for(mask = 0x1, j = 0;mask < FFTSize;mask <<= 1)
{
if((i&mask) != 0)
j++;
j <<= 1;
}
j >>= 1;
if(i < j)
{
temp = FFTBuffer[i];
FFTBuffer[i] = FFTBuffer[j];
FFTBuffer[j] = temp;
}
}
/* Iterative form of Danielson–Lanczos lemma */
for(i = 1, step = 2;i < FFTSize;i<<=1, step<<=1)
{
step2 = step >> 1;
arg = M_PI / step2;
w.Real = cos(arg);
w.Imag = sin(arg) * Sign;
u.Real = 1.0;
u.Imag = 0.0;
for(j = 0;j < step2;j++)
{
for(k = j;k < FFTSize;k+=step)
{
temp = complex_mult(FFTBuffer[k+step2], u);
FFTBuffer[k+step2] = complex_sub(FFTBuffer[k], temp);
FFTBuffer[k] = complex_add(FFTBuffer[k], temp);
}
u = complex_mult(u, w);
}
}
}
/*Discrete Hilbert Transform (analytic signal form)*/
void hilbert(ALsizei size, ALcomplex *InOutBuffer )
{
ALsizei k;
2018-05-20 18:44:24 +02:00
const ALdouble inverse_size = 1.0/(ALdouble)size;
for ( k = 0; k < size;k++ )
InOutBuffer[k].Imag = 0.0;
complex_fft( InOutBuffer, size, 1.0 );
for( k = 0; k < size; k++ )
{
if( k == 0 || k == size/2 )
{
InOutBuffer[k].Real *= inverse_size;
InOutBuffer[k].Imag *= inverse_size;
}
else if ( k >=1 && k < size/2 )
{
InOutBuffer[k].Real *= 2.0*inverse_size;
InOutBuffer[k].Imag *= 2.0*inverse_size;
}
else
{
InOutBuffer[k].Real = 0.0;
InOutBuffer[k].Imag = 0.0;
}
}
complex_fft( InOutBuffer, size,-1.0 );
}