obs-studio/libobs-opengl/gl-vertexbuffer.c
James Park aa22b61e3e libobs: Full-screen triangle format conversions
The cache coherency of rasterization for full-screen passes is better
using an oversized triangle that is clipped rather than two triangles.
Traversal order of rasterization is GPU-specific, but will almost
certainly be better using an undivided primitive.

A smaller benefit is that quads along the diagonal are not evaluated
multiple times, but that's minor in comparison.

Redo format shaders to bypass vertex buffer, and input layout. Add
global shader bool "obs_glsl_compile" to make API-specific decisions,
i.e. handle upside-down UVs. gl_ortho is not needed for format
conversion because the vertex shader does not use ViewProj anymore.

This can be applied to more situations, but start small first.

Testbed full screen passes, Intel HD Graphics 530:
RGBA -> UYVX: 467 -> 439 us, ~6% savings
UYVX -> uv: 295 -> 239 us, ~19% savings
2019-06-18 22:29:07 -07:00

279 lines
6.9 KiB
C

/******************************************************************************
Copyright (C) 2013 by Hugh Bailey <obs.jim@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************/
#include <graphics/vec3.h>
#include "gl-subsystem.h"
static bool create_buffers(struct gs_vertex_buffer *vb)
{
GLenum usage = vb->dynamic ? GL_STREAM_DRAW : GL_STATIC_DRAW;
size_t i;
if (!gl_create_buffer(GL_ARRAY_BUFFER, &vb->vertex_buffer,
vb->data->num * sizeof(struct vec3),
vb->data->points, usage))
return false;
if (vb->data->normals) {
if (!gl_create_buffer(GL_ARRAY_BUFFER, &vb->normal_buffer,
vb->data->num * sizeof(struct vec3),
vb->data->normals, usage))
return false;
}
if (vb->data->tangents) {
if (!gl_create_buffer(GL_ARRAY_BUFFER, &vb->tangent_buffer,
vb->data->num * sizeof(struct vec3),
vb->data->tangents, usage))
return false;
}
if (vb->data->colors) {
if (!gl_create_buffer(GL_ARRAY_BUFFER, &vb->color_buffer,
vb->data->num * sizeof(uint32_t),
vb->data->colors, usage))
return false;
}
da_reserve(vb->uv_buffers, vb->data->num_tex);
da_reserve(vb->uv_sizes, vb->data->num_tex);
for (i = 0; i < vb->data->num_tex; i++) {
GLuint tex_buffer;
struct gs_tvertarray *tv = vb->data->tvarray+i;
size_t size = vb->data->num * sizeof(float) * tv->width;
if (!gl_create_buffer(GL_ARRAY_BUFFER, &tex_buffer, size,
tv->array, usage))
return false;
da_push_back(vb->uv_buffers, &tex_buffer);
da_push_back(vb->uv_sizes, &tv->width);
}
if (!vb->dynamic) {
gs_vbdata_destroy(vb->data);
vb->data = NULL;
}
if (!gl_gen_vertex_arrays(1, &vb->vao))
return false;
return true;
}
gs_vertbuffer_t *device_vertexbuffer_create(gs_device_t *device,
struct gs_vb_data *data, uint32_t flags)
{
struct gs_vertex_buffer *vb = bzalloc(sizeof(struct gs_vertex_buffer));
vb->device = device;
vb->data = data;
vb->num = data->num;
vb->dynamic = flags & GS_DYNAMIC;
if (!create_buffers(vb)) {
blog(LOG_ERROR, "device_vertexbuffer_create (GL) failed");
gs_vertexbuffer_destroy(vb);
return NULL;
}
return vb;
}
void gs_vertexbuffer_destroy(gs_vertbuffer_t *vb)
{
if (vb) {
if (vb->vertex_buffer)
gl_delete_buffers(1, &vb->vertex_buffer);
if (vb->normal_buffer)
gl_delete_buffers(1, &vb->normal_buffer);
if (vb->tangent_buffer)
gl_delete_buffers(1, &vb->tangent_buffer);
if (vb->color_buffer)
gl_delete_buffers(1, &vb->color_buffer);
if (vb->uv_buffers.num)
gl_delete_buffers((GLsizei)vb->uv_buffers.num,
vb->uv_buffers.array);
if (vb->vao)
gl_delete_vertex_arrays(1, &vb->vao);
da_free(vb->uv_sizes);
da_free(vb->uv_buffers);
gs_vbdata_destroy(vb->data);
bfree(vb);
}
}
static inline void gs_vertexbuffer_flush_internal(gs_vertbuffer_t *vb,
const struct gs_vb_data *data)
{
size_t i;
size_t num_tex = data->num_tex < vb->data->num_tex
? data->num_tex
: vb->data->num_tex;
if (!vb->dynamic) {
blog(LOG_ERROR, "vertex buffer is not dynamic");
goto failed;
}
if (data->points) {
if (!update_buffer(GL_ARRAY_BUFFER, vb->vertex_buffer,
data->points,
data->num * sizeof(struct vec3)))
goto failed;
}
if (vb->normal_buffer && data->normals) {
if (!update_buffer(GL_ARRAY_BUFFER, vb->normal_buffer,
data->normals,
data->num * sizeof(struct vec3)))
goto failed;
}
if (vb->tangent_buffer && data->tangents) {
if (!update_buffer(GL_ARRAY_BUFFER, vb->tangent_buffer,
data->tangents,
data->num * sizeof(struct vec3)))
goto failed;
}
if (vb->color_buffer && data->colors) {
if (!update_buffer(GL_ARRAY_BUFFER, vb->color_buffer,
data->colors,
data->num * sizeof(uint32_t)))
goto failed;
}
for (i = 0; i < num_tex; i++) {
GLuint buffer = vb->uv_buffers.array[i];
struct gs_tvertarray *tv = data->tvarray+i;
size_t size = data->num * tv->width * sizeof(float);
if (!update_buffer(GL_ARRAY_BUFFER, buffer, tv->array, size))
goto failed;
}
return;
failed:
blog(LOG_ERROR, "gs_vertexbuffer_flush (GL) failed");
}
void gs_vertexbuffer_flush(gs_vertbuffer_t *vb)
{
gs_vertexbuffer_flush_internal(vb, vb->data);
}
void gs_vertexbuffer_flush_direct(gs_vertbuffer_t *vb,
const struct gs_vb_data *data)
{
gs_vertexbuffer_flush_internal(vb, data);
}
struct gs_vb_data *gs_vertexbuffer_get_data(const gs_vertbuffer_t *vb)
{
return vb->data;
}
static inline GLuint get_vb_buffer(struct gs_vertex_buffer *vb,
enum attrib_type type, size_t index, GLint *width,
GLenum *gl_type)
{
*gl_type = GL_FLOAT;
*width = 4;
if (type == ATTRIB_POSITION) {
return vb->vertex_buffer;
} else if (type == ATTRIB_NORMAL) {
return vb->normal_buffer;
} else if (type == ATTRIB_TANGENT) {
return vb->tangent_buffer;
} else if (type == ATTRIB_COLOR) {
*gl_type = GL_UNSIGNED_BYTE;
return vb->color_buffer;
} else if (type == ATTRIB_TEXCOORD) {
if (vb->uv_buffers.num <= index)
return 0;
*width = (GLint)vb->uv_sizes.array[index];
return vb->uv_buffers.array[index];
}
return 0;
}
static bool load_vb_buffer(struct shader_attrib *attrib,
struct gs_vertex_buffer *vb, GLint id)
{
GLenum type;
GLint width;
GLuint buffer;
bool success = true;
buffer = get_vb_buffer(vb, attrib->type, attrib->index, &width, &type);
if (!buffer) {
blog(LOG_ERROR, "Vertex buffer does not have the required "
"inputs for vertex shader");
return false;
}
if (!gl_bind_buffer(GL_ARRAY_BUFFER, buffer))
return false;
glVertexAttribPointer(id, width, type, GL_TRUE, 0, 0);
if (!gl_success("glVertexAttribPointer"))
success = false;
glEnableVertexAttribArray(id);
if (!gl_success("glEnableVertexAttribArray"))
success = false;
if (!gl_bind_buffer(GL_ARRAY_BUFFER, 0))
success = false;
return success;
}
bool load_vb_buffers(struct gs_program *program, struct gs_vertex_buffer *vb,
struct gs_index_buffer *ib)
{
struct gs_shader *shader = program->vertex_shader;
size_t i;
if (vb && !gl_bind_vertex_array(vb->vao))
return false;
for (i = 0; i < shader->attribs.num; i++) {
struct shader_attrib *attrib = shader->attribs.array+i;
if (!load_vb_buffer(attrib, vb, program->attribs.array[i]))
return false;
}
if (ib && !gl_bind_buffer(GL_ELEMENT_ARRAY_BUFFER, ib->buffer))
return false;
return true;
}
void device_load_vertexbuffer(gs_device_t *device, gs_vertbuffer_t *vb)
{
device->cur_vertex_buffer = vb;
}