2dbbffe4a2
- Changed glMapBuffer to glMapBufferRange to allow invalidation. Using just glMapBuffer alone was causing some unacceptable stalls. - Changed dynamic buffers from GL_DYNAMIC_WRITE to GL_STREAM_WRITE because I had misunderstood the OpenGL specification - Added _OPENGL and _D3D11 builtin preprocessor macros to effects to allow special processing if needed - Added fmod support to shaders (NOTE: D3D and GL do not function identically with negative numbers when using this. Positive numbers however function identically) - Created a planar conversion shader that converts from packed YUV to planar 420 right on the GPU without any CPU processing. Reduces required GPU download size to approximately 37.5% of its normal rate as well. GPU usage down by 10 entire percentage points despite the extra required pass.
1276 lines
29 KiB
C
1276 lines
29 KiB
C
/******************************************************************************
|
|
Copyright (C) 2013 by Hugh Bailey <obs.jim@gmail.com>
|
|
Copyright (C) 2014 by Zachary Lund <admin@computerquip.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
******************************************************************************/
|
|
|
|
#include <graphics/matrix3.h>
|
|
#include "gl-subsystem.h"
|
|
|
|
/* Goofy Windows.h macros need to be removed */
|
|
#undef far
|
|
#undef near
|
|
|
|
#ifdef _DEBUG
|
|
/* Tables for OpenGL debug */
|
|
static const char* debug_source_table[] = {
|
|
"API",
|
|
"Window System",
|
|
"Shader Compiler",
|
|
"Third Party"
|
|
"Application",
|
|
"Other"
|
|
};
|
|
|
|
static const char* debug_type_table[] = {
|
|
"Error",
|
|
"Deprecated Behavior",
|
|
"Undefined Behavior",
|
|
"Portability",
|
|
"Performance",
|
|
"Other"
|
|
};
|
|
|
|
static const char* debug_severity_table[] = {
|
|
"High",
|
|
"Medium",
|
|
"Low"
|
|
};
|
|
|
|
/* ARB and core values are the same. They'll always be linear so no hardcoding.
|
|
* The values subtracted are the lowest value in the list of valid values. */
|
|
#define GL_DEBUG_SOURCE_OFFSET(x) (x - GL_DEBUG_SOURCE_API_ARB)
|
|
#define GL_DEBUG_TYPE_OFFSET(x) (x - GL_DEBUG_TYPE_ERROR_ARB)
|
|
#define GL_DEBUG_SEVERITY_OFFSET(x) (x - GL_DEBUG_SEVERITY_HIGH_ARB)
|
|
|
|
static void APIENTRY gl_debug_proc(
|
|
GLenum source, GLenum type, GLuint id, GLenum severity,
|
|
GLsizei length, const GLchar *message, const GLvoid *data )
|
|
{
|
|
blog( LOG_DEBUG,
|
|
"[%s][%s]{%s}: %.*s",
|
|
debug_source_table[GL_DEBUG_SOURCE_OFFSET(source)],
|
|
debug_type_table[GL_DEBUG_TYPE_OFFSET(type)],
|
|
debug_severity_table[GL_DEBUG_SEVERITY_OFFSET(severity)],
|
|
length, message
|
|
);
|
|
}
|
|
|
|
static void gl_enable_debug()
|
|
{
|
|
/* Perhaps we should create GLEW contexts? */
|
|
if (ogl_IsVersionGEQ(4, 3)) {
|
|
glDebugMessageCallback(gl_debug_proc, NULL);
|
|
gl_enable(GL_DEBUG_OUTPUT);
|
|
} else if (ogl_ext_ARB_debug_output) {
|
|
glDebugMessageCallbackARB(gl_debug_proc, NULL);
|
|
} else {
|
|
blog(LOG_DEBUG, "Failed to set GL debug callback as it is "
|
|
"not supported.");
|
|
}
|
|
}
|
|
#else
|
|
static void gl_enable_debug() {}
|
|
#endif
|
|
|
|
static bool gl_init_extensions(struct gs_device* device)
|
|
{
|
|
if (!ogl_IsVersionGEQ(2, 1)) {
|
|
blog(LOG_ERROR, "obs-studio requires OpenGL version 2.1 or "
|
|
"higher.");
|
|
return false;
|
|
}
|
|
|
|
gl_enable_debug();
|
|
|
|
if (!ogl_IsVersionGEQ(3, 0) && !ogl_ext_ARB_framebuffer_object) {
|
|
blog(LOG_ERROR, "OpenGL extension ARB_framebuffer_object "
|
|
"is required.");
|
|
return false;
|
|
}
|
|
|
|
if (ogl_IsVersionGEQ(3, 2) || ogl_ext_ARB_seamless_cube_map) {
|
|
gl_enable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
|
|
}
|
|
|
|
if (!ogl_IsVersionGEQ(4, 1) && !ogl_ext_ARB_separate_shader_objects) {
|
|
blog(LOG_ERROR, "OpenGL extension ARB_separate_shader_objects "
|
|
"is required.");
|
|
return false;
|
|
}
|
|
|
|
if (ogl_IsVersionGEQ(4, 3) || ogl_ext_ARB_copy_image)
|
|
device->copy_type = COPY_TYPE_ARB;
|
|
else if (ogl_ext_NV_copy_image)
|
|
device->copy_type = COPY_TYPE_NV;
|
|
else
|
|
device->copy_type = COPY_TYPE_FBO_BLIT;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void clear_textures(struct gs_device *device)
|
|
{
|
|
GLenum i;
|
|
for (i = 0; i < GS_MAX_TEXTURES; i++) {
|
|
if (device->cur_textures[i]) {
|
|
gl_active_texture(GL_TEXTURE0 + i);
|
|
gl_bind_texture(device->cur_textures[i]->gl_target, 0);
|
|
device->cur_textures[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void convert_sampler_info(struct gs_sampler_state *sampler,
|
|
struct gs_sampler_info *info)
|
|
{
|
|
GLint max_anisotropy_max;
|
|
convert_filter(info->filter, &sampler->min_filter,
|
|
&sampler->mag_filter);
|
|
sampler->address_u = convert_address_mode(info->address_u);
|
|
sampler->address_v = convert_address_mode(info->address_v);
|
|
sampler->address_w = convert_address_mode(info->address_w);
|
|
sampler->max_anisotropy = info->max_anisotropy;
|
|
|
|
max_anisotropy_max = 1;
|
|
glGetIntegerv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &max_anisotropy_max);
|
|
gl_success("glGetIntegerv(GL_MAX_TEXTURE_ANISOTROPY_MAX)");
|
|
|
|
if (1 <= sampler->max_anisotropy &&
|
|
sampler->max_anisotropy <= max_anisotropy_max)
|
|
return;
|
|
|
|
if (sampler->max_anisotropy < 1)
|
|
sampler->max_anisotropy = 1;
|
|
else if (sampler->max_anisotropy > max_anisotropy_max)
|
|
sampler->max_anisotropy = max_anisotropy_max;
|
|
|
|
blog(LOG_INFO, "convert_sampler_info: 1 <= max_anisotropy <= "
|
|
"%d violated, selected: %d, set: %d",
|
|
max_anisotropy_max,
|
|
info->max_anisotropy, sampler->max_anisotropy);
|
|
}
|
|
|
|
const char *device_preprocessor_name(void)
|
|
{
|
|
return "_OPENGL";
|
|
}
|
|
|
|
device_t device_create(struct gs_init_data *info)
|
|
{
|
|
struct gs_device *device = bzalloc(sizeof(struct gs_device));
|
|
|
|
device->plat = gl_platform_create(device, info);
|
|
if (!device->plat)
|
|
goto fail;
|
|
|
|
if (!gl_init_extensions(device))
|
|
goto fail;
|
|
|
|
gl_enable(GL_CULL_FACE);
|
|
|
|
glGenProgramPipelines(1, &device->pipeline);
|
|
if (!gl_success("glGenProgramPipelines"))
|
|
goto fail;
|
|
|
|
glBindProgramPipeline(device->pipeline);
|
|
if (!gl_success("glBindProgramPipeline"))
|
|
goto fail;
|
|
|
|
device_leavecontext(device);
|
|
device->cur_swap = gl_platform_getswap(device->plat);
|
|
|
|
return device;
|
|
|
|
fail:
|
|
blog(LOG_ERROR, "device_create (GL) failed");
|
|
bfree(device);
|
|
return NULL;
|
|
}
|
|
|
|
void device_destroy(device_t device)
|
|
{
|
|
if (device) {
|
|
size_t i;
|
|
for (i = 0; i < device->fbos.num; i++)
|
|
fbo_info_destroy(device->fbos.array[i]);
|
|
|
|
if (device->pipeline)
|
|
glDeleteProgramPipelines(1, &device->pipeline);
|
|
|
|
da_free(device->proj_stack);
|
|
da_free(device->fbos);
|
|
gl_platform_destroy(device->plat);
|
|
bfree(device);
|
|
}
|
|
}
|
|
|
|
swapchain_t device_create_swapchain(device_t device, struct gs_init_data *info)
|
|
{
|
|
struct gs_swap_chain *swap = bzalloc(sizeof(struct gs_swap_chain));
|
|
|
|
swap->device = device;
|
|
swap->info = *info;
|
|
swap->wi = gl_windowinfo_create(info);
|
|
if (!swap->wi) {
|
|
blog(LOG_ERROR, "device_create_swapchain (GL) failed");
|
|
swapchain_destroy(swap);
|
|
return NULL;
|
|
}
|
|
|
|
return swap;
|
|
}
|
|
|
|
void device_resize(device_t device, uint32_t cx, uint32_t cy)
|
|
{
|
|
/* GL automatically resizes the device, so it doesn't do much */
|
|
device->cur_swap->info.cx = cx;
|
|
device->cur_swap->info.cy = cy;
|
|
|
|
gl_update(device);
|
|
}
|
|
|
|
void device_getsize(device_t device, uint32_t *cx, uint32_t *cy)
|
|
{
|
|
*cx = device->cur_swap->info.cx;
|
|
*cy = device->cur_swap->info.cy;
|
|
}
|
|
|
|
uint32_t device_getwidth(device_t device)
|
|
{
|
|
return device->cur_swap->info.cx;
|
|
}
|
|
|
|
uint32_t device_getheight(device_t device)
|
|
{
|
|
return device->cur_swap->info.cy;
|
|
}
|
|
|
|
texture_t device_create_volumetexture(device_t device, uint32_t width,
|
|
uint32_t height, uint32_t depth,
|
|
enum gs_color_format color_format, uint32_t levels,
|
|
const void **data, uint32_t flags)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(device);
|
|
UNUSED_PARAMETER(width);
|
|
UNUSED_PARAMETER(height);
|
|
UNUSED_PARAMETER(depth);
|
|
UNUSED_PARAMETER(color_format);
|
|
UNUSED_PARAMETER(levels);
|
|
UNUSED_PARAMETER(data);
|
|
UNUSED_PARAMETER(flags);
|
|
return NULL;
|
|
}
|
|
|
|
samplerstate_t device_create_samplerstate(device_t device,
|
|
struct gs_sampler_info *info)
|
|
{
|
|
struct gs_sampler_state *sampler;
|
|
|
|
sampler = bzalloc(sizeof(struct gs_sampler_state));
|
|
sampler->device = device;
|
|
sampler->ref = 1;
|
|
|
|
convert_sampler_info(sampler, info);
|
|
return sampler;
|
|
}
|
|
|
|
enum gs_texture_type device_gettexturetype(texture_t texture)
|
|
{
|
|
return texture->type;
|
|
}
|
|
|
|
static void strip_mipmap_filter(GLint *filter)
|
|
{
|
|
switch (*filter) {
|
|
case GL_NEAREST:
|
|
case GL_LINEAR:
|
|
return;
|
|
case GL_NEAREST_MIPMAP_NEAREST:
|
|
case GL_NEAREST_MIPMAP_LINEAR:
|
|
*filter = GL_NEAREST;
|
|
return;
|
|
case GL_LINEAR_MIPMAP_NEAREST:
|
|
case GL_LINEAR_MIPMAP_LINEAR:
|
|
*filter = GL_LINEAR;
|
|
return;
|
|
}
|
|
*filter = GL_NEAREST;
|
|
}
|
|
|
|
static bool load_texture_sampler(texture_t tex, samplerstate_t ss)
|
|
{
|
|
bool success = true;
|
|
GLint min_filter;
|
|
|
|
if (tex->cur_sampler == ss)
|
|
return true;
|
|
|
|
if (tex->cur_sampler)
|
|
samplerstate_release(tex->cur_sampler);
|
|
tex->cur_sampler = ss;
|
|
if (!ss)
|
|
return true;
|
|
|
|
samplerstate_addref(ss);
|
|
|
|
min_filter = ss->min_filter;
|
|
if (texture_isrect(tex))
|
|
strip_mipmap_filter(&min_filter);
|
|
|
|
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MIN_FILTER,
|
|
min_filter))
|
|
success = false;
|
|
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MAG_FILTER,
|
|
ss->mag_filter))
|
|
success = false;
|
|
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_S, ss->address_u))
|
|
success = false;
|
|
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_T, ss->address_v))
|
|
success = false;
|
|
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_WRAP_R, ss->address_w))
|
|
success = false;
|
|
if (!gl_tex_param_i(tex->gl_target, GL_TEXTURE_MAX_ANISOTROPY_EXT,
|
|
ss->max_anisotropy))
|
|
success = false;
|
|
|
|
return success;
|
|
}
|
|
|
|
static inline struct shader_param *get_texture_param(device_t device, int unit)
|
|
{
|
|
struct gs_shader *shader = device->cur_pixel_shader;
|
|
size_t i;
|
|
|
|
for (i = 0; i < shader->params.num; i++) {
|
|
struct shader_param *param = shader->params.array+i;
|
|
if (param->type == SHADER_PARAM_TEXTURE) {
|
|
if (param->texture_id == unit)
|
|
return param;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void device_load_texture(device_t device, texture_t tex, int unit)
|
|
{
|
|
struct shader_param *param;
|
|
struct gs_sampler_state *sampler;
|
|
struct gs_texture *cur_tex = device->cur_textures[unit];
|
|
|
|
/* need a pixel shader to properly bind textures */
|
|
if (!device->cur_pixel_shader)
|
|
tex = NULL;
|
|
|
|
if (cur_tex == tex)
|
|
return;
|
|
|
|
if (!gl_active_texture(GL_TEXTURE0 + unit))
|
|
goto fail;
|
|
|
|
/* the target for the previous text may not be the same as the
|
|
* next texture, so unbind the previous texture first to be safe */
|
|
if (cur_tex && (!tex || cur_tex->gl_target != tex->gl_target))
|
|
gl_bind_texture(cur_tex->gl_target, 0);
|
|
|
|
device->cur_textures[unit] = tex;
|
|
param = get_texture_param(device, unit);
|
|
if (!param)
|
|
return;
|
|
|
|
param->texture = tex;
|
|
|
|
if (!tex)
|
|
return;
|
|
|
|
sampler = device->cur_samplers[param->sampler_id];
|
|
|
|
if (!gl_bind_texture(tex->gl_target, tex->texture))
|
|
goto fail;
|
|
if (sampler && !load_texture_sampler(tex, sampler))
|
|
goto fail;
|
|
|
|
return;
|
|
|
|
fail:
|
|
blog(LOG_ERROR, "device_load_texture (GL) failed");
|
|
}
|
|
|
|
static bool load_sampler_on_textures(device_t device, samplerstate_t ss,
|
|
int sampler_unit)
|
|
{
|
|
struct gs_shader *shader = device->cur_pixel_shader;
|
|
size_t i;
|
|
|
|
for (i = 0; i < shader->params.num; i++) {
|
|
struct shader_param *param = shader->params.array+i;
|
|
|
|
if (param->type == SHADER_PARAM_TEXTURE &&
|
|
param->sampler_id == (uint32_t)sampler_unit &&
|
|
param->texture) {
|
|
if (!gl_active_texture(GL_TEXTURE0 + param->texture_id))
|
|
return false;
|
|
if (!load_texture_sampler(param->texture, ss))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void device_load_samplerstate(device_t device, samplerstate_t ss, int unit)
|
|
{
|
|
/* need a pixel shader to properly bind samplers */
|
|
if (!device->cur_pixel_shader)
|
|
ss = NULL;
|
|
|
|
if (device->cur_samplers[unit] == ss)
|
|
return;
|
|
|
|
device->cur_samplers[unit] = ss;
|
|
|
|
if (!ss)
|
|
return;
|
|
|
|
if (!load_sampler_on_textures(device, ss, unit))
|
|
blog(LOG_ERROR, "device_load_samplerstate (GL) failed");
|
|
|
|
return;
|
|
}
|
|
|
|
void device_load_vertexshader(device_t device, shader_t vertshader)
|
|
{
|
|
GLuint program = 0;
|
|
vertbuffer_t cur_vb = device->cur_vertex_buffer;
|
|
|
|
if (device->cur_vertex_shader == vertshader)
|
|
return;
|
|
|
|
if (vertshader && vertshader->type != SHADER_VERTEX) {
|
|
blog(LOG_ERROR, "Specified shader is not a vertex shader");
|
|
goto fail;
|
|
}
|
|
|
|
/* unload and reload the vertex buffer to sync the buffers up with
|
|
* the specific shader */
|
|
if (cur_vb && !vertexbuffer_load(device, NULL))
|
|
goto fail;
|
|
|
|
device->cur_vertex_shader = vertshader;
|
|
|
|
if (vertshader)
|
|
program = vertshader->program;
|
|
|
|
glUseProgramStages(device->pipeline, GL_VERTEX_SHADER_BIT, program);
|
|
if (!gl_success("glUseProgramStages"))
|
|
goto fail;
|
|
|
|
if (cur_vb && !vertexbuffer_load(device, cur_vb))
|
|
goto fail;
|
|
|
|
return;
|
|
|
|
fail:
|
|
blog(LOG_ERROR, "device_load_vertexshader (GL) failed");
|
|
}
|
|
|
|
static void load_default_pixelshader_samplers(struct gs_device *device,
|
|
struct gs_shader *ps)
|
|
{
|
|
size_t i;
|
|
if (!ps)
|
|
return;
|
|
|
|
for (i = 0; i < ps->samplers.num; i++) {
|
|
struct gs_sampler_state *ss = ps->samplers.array[i];
|
|
device->cur_samplers[i] = ss;
|
|
}
|
|
|
|
for (; i < GS_MAX_TEXTURES; i++)
|
|
device->cur_samplers[i] = NULL;
|
|
}
|
|
|
|
void device_load_pixelshader(device_t device, shader_t pixelshader)
|
|
{
|
|
GLuint program = 0;
|
|
if (device->cur_pixel_shader == pixelshader)
|
|
return;
|
|
|
|
if (pixelshader && pixelshader->type != SHADER_PIXEL) {
|
|
blog(LOG_ERROR, "Specified shader is not a pixel shader");
|
|
goto fail;
|
|
}
|
|
|
|
device->cur_pixel_shader = pixelshader;
|
|
|
|
if (pixelshader)
|
|
program = pixelshader->program;
|
|
|
|
glUseProgramStages(device->pipeline, GL_FRAGMENT_SHADER_BIT, program);
|
|
if (!gl_success("glUseProgramStages"))
|
|
goto fail;
|
|
|
|
clear_textures(device);
|
|
|
|
if (pixelshader)
|
|
load_default_pixelshader_samplers(device, pixelshader);
|
|
return;
|
|
|
|
fail:
|
|
blog(LOG_ERROR, "device_load_pixelshader (GL) failed");
|
|
}
|
|
|
|
void device_load_defaultsamplerstate(device_t device, bool b_3d, int unit)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(device);
|
|
UNUSED_PARAMETER(b_3d);
|
|
UNUSED_PARAMETER(unit);
|
|
}
|
|
|
|
shader_t device_getvertexshader(device_t device)
|
|
{
|
|
return device->cur_vertex_shader;
|
|
}
|
|
|
|
shader_t device_getpixelshader(device_t device)
|
|
{
|
|
return device->cur_pixel_shader;
|
|
}
|
|
|
|
texture_t device_getrendertarget(device_t device)
|
|
{
|
|
return device->cur_render_target;
|
|
}
|
|
|
|
zstencil_t device_getzstenciltarget(device_t device)
|
|
{
|
|
return device->cur_zstencil_buffer;
|
|
}
|
|
|
|
static bool get_tex_dimensions(texture_t tex, uint32_t *width, uint32_t *height)
|
|
{
|
|
if (tex->type == GS_TEXTURE_2D) {
|
|
struct gs_texture_2d *tex2d = (struct gs_texture_2d*)tex;
|
|
*width = tex2d->width;
|
|
*height = tex2d->height;
|
|
return true;
|
|
|
|
} else if (tex->type == GS_TEXTURE_CUBE) {
|
|
struct gs_texture_cube *cube = (struct gs_texture_cube*)tex;
|
|
*width = cube->size;
|
|
*height = cube->size;
|
|
return true;
|
|
}
|
|
|
|
blog(LOG_ERROR, "Texture must be 2D or cubemap");
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* This automatically manages FBOs so that render targets are always given
|
|
* an FBO that matches their width/height/format to maximize optimization
|
|
*/
|
|
struct fbo_info *get_fbo(struct gs_device *device,
|
|
uint32_t width, uint32_t height, enum gs_color_format format)
|
|
{
|
|
size_t i;
|
|
GLuint fbo;
|
|
struct fbo_info *ptr;
|
|
|
|
for (i = 0; i < device->fbos.num; i++) {
|
|
ptr = device->fbos.array[i];
|
|
|
|
if (ptr->width == width && ptr->height == height &&
|
|
ptr->format == format)
|
|
return ptr;
|
|
}
|
|
|
|
glGenFramebuffers(1, &fbo);
|
|
if (!gl_success("glGenFramebuffers"))
|
|
return NULL;
|
|
|
|
ptr = bmalloc(sizeof(struct fbo_info));
|
|
ptr->fbo = fbo;
|
|
ptr->width = width;
|
|
ptr->height = height;
|
|
ptr->format = format;
|
|
ptr->cur_render_target = NULL;
|
|
ptr->cur_render_side = 0;
|
|
ptr->cur_zstencil_buffer = NULL;
|
|
|
|
da_push_back(device->fbos, &ptr);
|
|
return ptr;
|
|
}
|
|
|
|
static inline struct fbo_info *get_fbo_by_tex(struct gs_device *device,
|
|
texture_t tex)
|
|
{
|
|
uint32_t width, height;
|
|
if (!get_tex_dimensions(tex, &width, &height))
|
|
return NULL;
|
|
|
|
return get_fbo(device, width, height, tex->format);
|
|
}
|
|
|
|
static bool set_current_fbo(device_t device, struct fbo_info *fbo)
|
|
{
|
|
if (device->cur_fbo != fbo) {
|
|
GLuint fbo_obj = fbo ? fbo->fbo : 0;
|
|
if (!gl_bind_framebuffer(GL_DRAW_FRAMEBUFFER, fbo_obj))
|
|
return false;
|
|
}
|
|
|
|
device->cur_fbo = fbo;
|
|
return true;
|
|
}
|
|
|
|
static bool attach_rendertarget(struct fbo_info *fbo, texture_t tex, int side)
|
|
{
|
|
if (fbo->cur_render_target == tex)
|
|
return true;
|
|
|
|
fbo->cur_render_target = tex;
|
|
|
|
if (tex->type == GS_TEXTURE_2D) {
|
|
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER,
|
|
GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
|
|
tex->texture, 0);
|
|
|
|
} else if (tex->type == GS_TEXTURE_CUBE) {
|
|
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER,
|
|
GL_COLOR_ATTACHMENT0,
|
|
GL_TEXTURE_CUBE_MAP_POSITIVE_X + side,
|
|
tex->texture, 0);
|
|
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return gl_success("glFramebufferTexture2D");
|
|
}
|
|
|
|
static bool attach_zstencil(struct fbo_info *fbo, zstencil_t zs)
|
|
{
|
|
GLuint zsbuffer = 0;
|
|
GLenum zs_attachment = GL_DEPTH_STENCIL_ATTACHMENT;
|
|
|
|
if (fbo->cur_zstencil_buffer == zs)
|
|
return true;
|
|
|
|
fbo->cur_zstencil_buffer = zs;
|
|
|
|
if (zs) {
|
|
zsbuffer = zs->buffer;
|
|
zs_attachment = zs->attachment;
|
|
}
|
|
|
|
glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER,
|
|
zs_attachment, GL_RENDERBUFFER, zsbuffer);
|
|
if (!gl_success("glFramebufferRenderbuffer"))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool set_target(device_t device, texture_t tex, int side, zstencil_t zs)
|
|
{
|
|
struct fbo_info *fbo;
|
|
|
|
if (device->cur_render_target == tex &&
|
|
device->cur_zstencil_buffer == zs &&
|
|
device->cur_render_side == side)
|
|
return true;
|
|
|
|
device->cur_render_target = tex;
|
|
device->cur_render_side = side;
|
|
device->cur_zstencil_buffer = zs;
|
|
|
|
if (!tex)
|
|
return set_current_fbo(device, NULL);
|
|
|
|
fbo = get_fbo_by_tex(device, tex);
|
|
if (!fbo)
|
|
return false;
|
|
|
|
set_current_fbo(device, fbo);
|
|
|
|
if (!attach_rendertarget(fbo, tex, side))
|
|
return false;
|
|
if (!attach_zstencil(fbo, zs))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void device_setrendertarget(device_t device, texture_t tex, zstencil_t zstencil)
|
|
{
|
|
if (tex) {
|
|
if (tex->type != GS_TEXTURE_2D) {
|
|
blog(LOG_ERROR, "Texture is not a 2D texture");
|
|
goto fail;
|
|
}
|
|
|
|
if (!tex->is_render_target) {
|
|
blog(LOG_ERROR, "Texture is not a render target");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (!set_target(device, tex, 0, zstencil))
|
|
goto fail;
|
|
|
|
return;
|
|
|
|
fail:
|
|
blog(LOG_ERROR, "device_setrendertarget (GL) failed");
|
|
}
|
|
|
|
void device_setcuberendertarget(device_t device, texture_t cubetex,
|
|
int side, zstencil_t zstencil)
|
|
{
|
|
if (cubetex) {
|
|
if (cubetex->type != GS_TEXTURE_CUBE) {
|
|
blog(LOG_ERROR, "Texture is not a cube texture");
|
|
goto fail;
|
|
}
|
|
|
|
if (!cubetex->is_render_target) {
|
|
blog(LOG_ERROR, "Texture is not a render target");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (!set_target(device, cubetex, side, zstencil))
|
|
goto fail;
|
|
|
|
return;
|
|
|
|
fail:
|
|
blog(LOG_ERROR, "device_setcuberendertarget (GL) failed");
|
|
}
|
|
|
|
void device_copy_texture(device_t device, texture_t dst, texture_t src)
|
|
{
|
|
struct gs_texture_2d *src2d = (struct gs_texture_2d*)src;
|
|
struct gs_texture_2d *dst2d = (struct gs_texture_2d*)dst;
|
|
|
|
if (!src) {
|
|
blog(LOG_ERROR, "Source texture is NULL");
|
|
goto fail;
|
|
}
|
|
|
|
if (!dst) {
|
|
blog(LOG_ERROR, "Destination texture is NULL");
|
|
goto fail;
|
|
}
|
|
|
|
if (dst->type != GS_TEXTURE_2D || src->type != GS_TEXTURE_2D) {
|
|
blog(LOG_ERROR, "Source and destination textures must be 2D "
|
|
"textures");
|
|
goto fail;
|
|
}
|
|
|
|
if (dst->format != src->format) {
|
|
blog(LOG_ERROR, "Source and destination formats do not match");
|
|
goto fail;
|
|
}
|
|
|
|
if (dst2d->width != src2d->width || dst2d->height != src2d->height) {
|
|
blog(LOG_ERROR, "Source and destination must have "
|
|
"the same dimensions");
|
|
goto fail;
|
|
}
|
|
|
|
if (!gl_copy_texture(device, dst->texture, dst->gl_target,
|
|
src->texture, src->gl_target,
|
|
src2d->width, src2d->height, src->format))
|
|
goto fail;
|
|
|
|
return;
|
|
|
|
fail:
|
|
blog(LOG_ERROR, "device_copy_texture (GL) failed");
|
|
}
|
|
|
|
void device_beginscene(device_t device)
|
|
{
|
|
clear_textures(device);
|
|
}
|
|
|
|
static inline bool can_render(device_t device)
|
|
{
|
|
if (!device->cur_vertex_shader) {
|
|
blog(LOG_ERROR, "No vertex shader specified");
|
|
return false;
|
|
}
|
|
|
|
if (!device->cur_pixel_shader) {
|
|
blog(LOG_ERROR, "No pixel shader specified");
|
|
return false;
|
|
}
|
|
|
|
if (!device->cur_vertex_buffer) {
|
|
blog(LOG_ERROR, "No vertex buffer specified");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void update_viewproj_matrix(struct gs_device *device)
|
|
{
|
|
struct gs_shader *vs = device->cur_vertex_shader;
|
|
struct matrix3 cur_matrix;
|
|
gs_matrix_get(&cur_matrix);
|
|
|
|
matrix4_from_matrix3(&device->cur_view, &cur_matrix);
|
|
matrix4_mul(&device->cur_viewproj, &device->cur_view,
|
|
&device->cur_proj);
|
|
matrix4_transpose(&device->cur_viewproj, &device->cur_viewproj);
|
|
|
|
if (vs->viewproj)
|
|
shader_setmatrix4(vs, vs->viewproj, &device->cur_viewproj);
|
|
}
|
|
|
|
static inline bool check_shader_pipeline_validity(device_t device)
|
|
{
|
|
int valid = false;
|
|
|
|
glValidateProgramPipeline(device->pipeline);
|
|
if (!gl_success("glValidateProgramPipeline"))
|
|
return false;
|
|
|
|
glGetProgramPipelineiv(device->pipeline, GL_VALIDATE_STATUS, &valid);
|
|
if (!gl_success("glGetProgramPipelineiv"))
|
|
return false;
|
|
|
|
if (!valid)
|
|
blog(LOG_ERROR, "Shader pipeline appears to be invalid");
|
|
|
|
return valid != 0;
|
|
}
|
|
|
|
void device_draw(device_t device, enum gs_draw_mode draw_mode,
|
|
uint32_t start_vert, uint32_t num_verts)
|
|
{
|
|
struct gs_index_buffer *ib = device->cur_index_buffer;
|
|
GLenum topology = convert_gs_topology(draw_mode);
|
|
effect_t effect = gs_geteffect();
|
|
|
|
if (!can_render(device))
|
|
goto fail;
|
|
|
|
if (effect)
|
|
effect_updateparams(effect);
|
|
|
|
shader_update_textures(device->cur_pixel_shader);
|
|
|
|
update_viewproj_matrix(device);
|
|
|
|
|
|
#ifdef _DEBUG
|
|
if (!check_shader_pipeline_validity(device))
|
|
goto fail;
|
|
#endif
|
|
|
|
if (ib) {
|
|
if (num_verts == 0)
|
|
num_verts = (uint32_t)device->cur_index_buffer->num;
|
|
glDrawElements(topology, num_verts, ib->gl_type,
|
|
(const GLvoid*)(start_vert * ib->width));
|
|
if (!gl_success("glDrawElements"))
|
|
goto fail;
|
|
|
|
} else {
|
|
if (num_verts == 0)
|
|
num_verts = (uint32_t)device->cur_vertex_buffer->num;
|
|
glDrawArrays(topology, start_vert, num_verts);
|
|
if (!gl_success("glDrawArrays"))
|
|
goto fail;
|
|
}
|
|
|
|
return;
|
|
|
|
fail:
|
|
blog(LOG_ERROR, "device_draw (GL) failed");
|
|
}
|
|
|
|
void device_endscene(device_t device)
|
|
{
|
|
/* does nothing */
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_clear(device_t device, uint32_t clear_flags,
|
|
struct vec4 *color, float depth, uint8_t stencil)
|
|
{
|
|
GLbitfield gl_flags = 0;
|
|
|
|
if (clear_flags & GS_CLEAR_COLOR) {
|
|
glClearColor(color->x, color->y, color->z, color->w);
|
|
gl_flags |= GL_COLOR_BUFFER_BIT;
|
|
}
|
|
|
|
if (clear_flags & GS_CLEAR_DEPTH) {
|
|
glClearDepth(depth);
|
|
gl_flags |= GL_DEPTH_BUFFER_BIT;
|
|
}
|
|
|
|
if (clear_flags & GS_CLEAR_STENCIL) {
|
|
glClearStencil(stencil);
|
|
gl_flags |= GL_STENCIL_BUFFER_BIT;
|
|
}
|
|
|
|
glClear(gl_flags);
|
|
if (!gl_success("glClear"))
|
|
blog(LOG_ERROR, "device_clear (GL) failed");
|
|
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_setcullmode(device_t device, enum gs_cull_mode mode)
|
|
{
|
|
if (device->cur_cull_mode == mode)
|
|
return;
|
|
|
|
if (device->cur_cull_mode == GS_NEITHER)
|
|
gl_enable(GL_CULL_FACE);
|
|
|
|
device->cur_cull_mode = mode;
|
|
|
|
if (mode == GS_BACK)
|
|
gl_cull_face(GL_BACK);
|
|
else if (mode == GS_FRONT)
|
|
gl_cull_face(GL_FRONT);
|
|
else
|
|
gl_disable(GL_CULL_FACE);
|
|
}
|
|
|
|
enum gs_cull_mode device_getcullmode(device_t device)
|
|
{
|
|
return device->cur_cull_mode;
|
|
}
|
|
|
|
void device_enable_blending(device_t device, bool enable)
|
|
{
|
|
if (enable)
|
|
gl_enable(GL_BLEND);
|
|
else
|
|
gl_disable(GL_BLEND);
|
|
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_enable_depthtest(device_t device, bool enable)
|
|
{
|
|
if (enable)
|
|
gl_enable(GL_DEPTH_TEST);
|
|
else
|
|
gl_disable(GL_DEPTH_TEST);
|
|
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_enable_stenciltest(device_t device, bool enable)
|
|
{
|
|
if (enable)
|
|
gl_enable(GL_STENCIL_TEST);
|
|
else
|
|
gl_disable(GL_STENCIL_TEST);
|
|
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_enable_stencilwrite(device_t device, bool enable)
|
|
{
|
|
if (enable)
|
|
glStencilMask(0xFFFFFFFF);
|
|
else
|
|
glStencilMask(0);
|
|
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_enable_color(device_t device, bool red, bool green,
|
|
bool blue, bool alpha)
|
|
{
|
|
glColorMask(red, green, blue, alpha);
|
|
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_blendfunction(device_t device, enum gs_blend_type src,
|
|
enum gs_blend_type dest)
|
|
{
|
|
GLenum gl_src = convert_gs_blend_type(src);
|
|
GLenum gl_dst = convert_gs_blend_type(dest);
|
|
|
|
glBlendFunc(gl_src, gl_dst);
|
|
if (!gl_success("glBlendFunc"))
|
|
blog(LOG_ERROR, "device_blendfunction (GL) failed");
|
|
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_depthfunction(device_t device, enum gs_depth_test test)
|
|
{
|
|
GLenum gl_test = convert_gs_depth_test(test);
|
|
|
|
glDepthFunc(gl_test);
|
|
if (!gl_success("glDepthFunc"))
|
|
blog(LOG_ERROR, "device_depthfunction (GL) failed");
|
|
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_stencilfunction(device_t device, enum gs_stencil_side side,
|
|
enum gs_depth_test test)
|
|
{
|
|
GLenum gl_side = convert_gs_stencil_side(side);
|
|
GLenum gl_test = convert_gs_depth_test(test);
|
|
|
|
glStencilFuncSeparate(gl_side, gl_test, 0, 0xFFFFFFFF);
|
|
if (!gl_success("glStencilFuncSeparate"))
|
|
blog(LOG_ERROR, "device_stencilfunction (GL) failed");
|
|
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_stencilop(device_t device, enum gs_stencil_side side,
|
|
enum gs_stencil_op fail, enum gs_stencil_op zfail,
|
|
enum gs_stencil_op zpass)
|
|
{
|
|
GLenum gl_side = convert_gs_stencil_side(side);
|
|
GLenum gl_fail = convert_gs_stencil_op(fail);
|
|
GLenum gl_zfail = convert_gs_stencil_op(zfail);
|
|
GLenum gl_zpass = convert_gs_stencil_op(zpass);
|
|
|
|
glStencilOpSeparate(gl_side, gl_fail, gl_zfail, gl_zpass);
|
|
if (!gl_success("glStencilOpSeparate"))
|
|
blog(LOG_ERROR, "device_stencilop (GL) failed");
|
|
|
|
UNUSED_PARAMETER(device);
|
|
}
|
|
|
|
void device_enable_fullscreen(device_t device, bool enable)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(device);
|
|
UNUSED_PARAMETER(enable);
|
|
}
|
|
|
|
int device_fullscreen_enabled(device_t device)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(device);
|
|
return false;
|
|
}
|
|
|
|
void device_setdisplaymode(device_t device,
|
|
const struct gs_display_mode *mode)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(device);
|
|
UNUSED_PARAMETER(mode);
|
|
}
|
|
|
|
void device_getdisplaymode(device_t device,
|
|
struct gs_display_mode *mode)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(device);
|
|
UNUSED_PARAMETER(mode);
|
|
}
|
|
|
|
void device_setcolorramp(device_t device, float gamma, float brightness,
|
|
float contrast)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(device);
|
|
UNUSED_PARAMETER(gamma);
|
|
UNUSED_PARAMETER(brightness);
|
|
UNUSED_PARAMETER(contrast);
|
|
}
|
|
|
|
static inline uint32_t get_target_height(struct gs_device *device)
|
|
{
|
|
if (!device->cur_render_target)
|
|
return device_getheight(device);
|
|
|
|
if (device->cur_render_target->type == GS_TEXTURE_2D)
|
|
return texture_getheight(device->cur_render_target);
|
|
else /* cube map */
|
|
return cubetexture_getsize(device->cur_render_target);
|
|
}
|
|
|
|
void device_setviewport(device_t device, int x, int y, int width,
|
|
int height)
|
|
{
|
|
uint32_t base_height;
|
|
|
|
/* GL uses bottom-up coordinates for viewports. We want top-down */
|
|
if (device->cur_render_target) {
|
|
base_height = get_target_height(device);
|
|
} else {
|
|
uint32_t dw;
|
|
gl_getclientsize(device->cur_swap, &dw, &base_height);
|
|
}
|
|
|
|
glViewport(x, base_height - y - height, width, height);
|
|
if (!gl_success("glViewport"))
|
|
blog(LOG_ERROR, "device_setviewport (GL) failed");
|
|
|
|
device->cur_viewport.x = x;
|
|
device->cur_viewport.y = y;
|
|
device->cur_viewport.cx = width;
|
|
device->cur_viewport.cy = height;
|
|
}
|
|
|
|
void device_getviewport(device_t device, struct gs_rect *rect)
|
|
{
|
|
*rect = device->cur_viewport;
|
|
}
|
|
|
|
void device_setscissorrect(device_t device, struct gs_rect *rect)
|
|
{
|
|
UNUSED_PARAMETER(device);
|
|
glScissor(rect->x, rect->y, rect->cx, rect->cy);
|
|
if (!gl_success("glScissor"))
|
|
blog(LOG_ERROR, "device_setscissorrect (GL) failed");
|
|
}
|
|
|
|
void device_ortho(device_t device, float left, float right,
|
|
float top, float bottom, float near, float far)
|
|
{
|
|
struct matrix4 *dst = &device->cur_proj;
|
|
|
|
float rml = right-left;
|
|
float bmt = bottom-top;
|
|
float fmn = far-near;
|
|
|
|
vec4_zero(&dst->x);
|
|
vec4_zero(&dst->y);
|
|
vec4_zero(&dst->z);
|
|
vec4_zero(&dst->t);
|
|
|
|
dst->x.x = 2.0f / rml;
|
|
dst->t.x = (left+right) / -rml;
|
|
|
|
dst->y.y = 2.0f / -bmt;
|
|
dst->t.y = (bottom+top) / bmt;
|
|
|
|
dst->z.z = -2.0f / fmn;
|
|
dst->t.z = (far+near) / -fmn;
|
|
|
|
dst->t.w = 1.0f;
|
|
}
|
|
|
|
void device_frustum(device_t device, float left, float right,
|
|
float top, float bottom, float near, float far)
|
|
{
|
|
struct matrix4 *dst = &device->cur_proj;
|
|
|
|
float rml = right-left;
|
|
float tmb = top-bottom;
|
|
float nmf = near-far;
|
|
float nearx2 = 2.0f*near;
|
|
|
|
vec4_zero(&dst->x);
|
|
vec4_zero(&dst->y);
|
|
vec4_zero(&dst->z);
|
|
vec4_zero(&dst->t);
|
|
|
|
dst->x.x = nearx2 / rml;
|
|
dst->z.x = (left+right) / rml;
|
|
|
|
dst->y.y = nearx2 / tmb;
|
|
dst->z.y = (bottom+top) / tmb;
|
|
|
|
dst->z.z = (far+near) / nmf;
|
|
dst->t.z = 2.0f * (near*far) / nmf;
|
|
|
|
dst->z.w = -1.0f;
|
|
}
|
|
|
|
void device_projection_push(device_t device)
|
|
{
|
|
da_push_back(device->proj_stack, &device->cur_proj);
|
|
}
|
|
|
|
void device_projection_pop(device_t device)
|
|
{
|
|
struct matrix4 *end;
|
|
if (!device->proj_stack.num)
|
|
return;
|
|
|
|
end = da_end(device->proj_stack);
|
|
device->cur_proj = *end;
|
|
da_pop_back(device->proj_stack);
|
|
}
|
|
|
|
void swapchain_destroy(swapchain_t swapchain)
|
|
{
|
|
if (!swapchain)
|
|
return;
|
|
|
|
if (swapchain->device->cur_swap == swapchain)
|
|
device_load_swapchain(swapchain->device, NULL);
|
|
|
|
gl_windowinfo_destroy(swapchain->wi);
|
|
bfree(swapchain);
|
|
}
|
|
|
|
void volumetexture_destroy(texture_t voltex)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(voltex);
|
|
}
|
|
|
|
uint32_t volumetexture_getwidth(texture_t voltex)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(voltex);
|
|
return 0;
|
|
}
|
|
|
|
uint32_t volumetexture_getheight(texture_t voltex)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(voltex);
|
|
return 0;
|
|
}
|
|
|
|
uint32_t volumetexture_getdepth(texture_t voltex)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(voltex);
|
|
return 0;
|
|
}
|
|
|
|
enum gs_color_format volumetexture_getcolorformat(texture_t voltex)
|
|
{
|
|
/* TODO */
|
|
UNUSED_PARAMETER(voltex);
|
|
return GS_UNKNOWN;
|
|
}
|
|
|
|
void samplerstate_destroy(samplerstate_t samplerstate)
|
|
{
|
|
samplerstate_release(samplerstate);
|
|
}
|