Reduce and simplify the UI export interface. Having to export functions
with designated names was a bit silly for this case, it makes more sense
for inputs/outputs/etc because they have more functions associated with
them, but in this case the callback can be retrieved simply through the
enumeration exports. Makes it a bit easier and a little less awkward
for this situation.
Also, changed the exports and names to be a bit more consistent,
labelling them both as either "modal" or "modeless", and changed the UI
function calls to obs_exec_ui and obs_create_ui to imply modal/modeless
functionality a bit more.
I realized that I had intended modeless UI to be usable by plugins, but
it had been pointed out to me that modeless really needs to return a
pointer/handle to the user interface object that was created.
Add the ability to be able to call and use toolkit-specific or
program-specific user interface in modules.
User interface code can be either bundled with the module, or 'split'
out in to separate libraries (recommended).
There are three reasons why splitting is recommended:
1.) It allows plugins to be able to create custom user interface for
each toolkit if desired.
2.) Often, UI will be programmed in one language (the language of the
toolkit), and core logic may be programmed in another. This
allows plugins to keep the languages separated if necessary.
3.) It prevents direct linkage of UI toolkits libraries with core
module logic.
Splitting is not required, though is recommended if you want your plugin
to be more flexible with other user interface toolkits or programs.
Will implement a generic properties lookup next, which will be used for
automatic UI handling so that plugin UI isn't necessarily required.
I'm doing this because I might create another data structure called
obs_data for a different purpose. That and obs_program_data feels a bit
less vague for what it does.
- I seem to have fixed ths issues with the main preview widget. It
seems you just need to set the right window attributes to stop it from
breaking. Though when opengl is enabled, there appears to be a weird
background glitch in the Qt stuff -- I'm not entirely sure what's
going on. Bug in Qt?
Also fixed the layout issues, and the widget now properly resizes and
centers in to its parent widget.
- Prevent the render loop from accessing data if the data isn't valid.
Because obs->data is freed before the graphics stuff, it can cause
the graphics to keep trying to query the obs->data.displays_mutex
after it had already been destroyed.
- Added some code for FFmpeg output that I'm still playing around with.
Right now I'm just trying to get it to output to file and try to
understand the FFmpeg/libav APIs. Hopefully in the future this plugin
can be used for any sort of output to FFmpeg.
- Fixed a cast warning in audio-io.c with size_t -> uint32_t
- Renamed the 'video_info' and 'audio_info' structures to
'video_conver_info' and 'audio_convert_info' to better represent their
actual purpose, and to avoid confusion with 'audio_output_info' and
'video_output_info' structures.
- Removed a few macros from obs-def.h that were at one point going to be
used but no longer going to be used (at least for now)
- First, I redid the output interface for libobs. I feel like it's
going in a pretty good direction in terms of design.
Right now, the design is so that outputs and encoders are separate.
One or more outputs can connect to a specific encoder to receive its
data, or the output can connect directly to raw data from libobs
output itself, if the output doesn't want to use a designated encoder.
Data is received via callbacks set when you connect to the encoder or
raw output. Multiple outputs can receive the data from a single
encoder context if need be (such as for streaming to multiple channels
at once, and/or recording with the same data).
When an encoder is first connected to, it will connect to raw output,
and start encoding. Additional connections will receive that same
data being encoded as well after that. When the last encoder has
disconnected, it will stop encoding. If for some reason the encoder
needs to stop, it will use the callback with NULL to signal that
encoding has stopped. Some of these things may be subject to change
in the future, though it feels pretty good with this design so far.
Will have to see how well it works out in practice versus theory.
- Second, Started adding preliminary RTMP/x264 output plugin code.
To speed things up, I might just make a direct raw->FFmpeg output to
create a quick output plugin that we can start using for testing all
the subsystems.
Completely revamped the entire media i/o data and handlers. The
original idea was to have a system that would have connecting media
inputs and outputs, but at a certain point I realized that this was an
unnecessary complexity for what we wanted to do. (Also, it reminded me
of directshow filters, and I HATE directshow with a passion, and
wouldn't wish it upon my greatest enemy)
Now, audio/video outputs are connected to directly, with better callback
handlers, and will eventually have the ability to automatically handle
conversions such as 4:4:4 to 4:2:0 when connecting to an input that uses
them. Doing this will allow the video/audio i/o handlers to also
prevent duplicate conversion, as well as make it easier/simple to use.
My true goal for this is to make output and encoder plugins as simple to
create as possible. I want to be able to be able to create an output
plugin with almost no real hassle of having to worry about image
conversions, media inputs/outputs, etc. A plugin developer shouldn't
have to handle that sort of stuff when he/she doesn't really need to.
Plugins will be able to simply create a callback via obs_video() and/or
obs_audio(), and they will automatically receive the audio/video data in
the formats requested via a simple callback, without needing to do
almost anything else at all.
- Mixing still isn't implemented, but the audio system should be able
to start up, and mix at least once audio line for the time being.
Will have to write some test audio sources to verify things are
working properly, and build the rest of the output functionality.
- Using a recursive mutex fixes issues where objects need to enter the
main libobs sources mutex while already within the mutex in the same
thread. Otherwise it would keep getting locked on itself on
destruction.
Scenes will now signal via their source when an item has been added
or removed from them.
"add" - Item added to the scene.
Parameters: "scene": Scene that the item was added to.
"item": Item that was added.
"remove" - Item removed from the scene.
Parameters: "scene": Scene that the item was removed from.
"item": Item that was removed.