- Implemented better C++ classes for handling scenes/sources/items in
obs.hpp, allowing them to automatically increment and decrement the
references of each, as well as assign them to QVariants.
- Because QVariants are now using the C++ classes, remove the pointer
QVariant wrapper.
- Use the new C++ classes with the QVariant user data of list box items,
both for the sake of thread safety and to ensure that the data
referenced is not freed until removed. NOTE: still might need some
testing.
- Implemented a source-remove signal from libobs, and start using that
signal instead of the source-destroy signal for signalling item
removal.
- Add property list callbacks to sources/outputs/encoders so that if
necessary user interface can be automatically generated or perhaps a
property list widget can be used for them.
- Change some of the property API names. obs_property_list_t felt a bit
awkward when actually using it, so I just renamed it to
obs_properties_t.
- Removed the getdata/setdata nad getparam/setparam functions from
sources/services, they will be superseded by the dynamic procedure
call API.
Implement a properties definition interface to allow modules to export
general properties associated with objects of libobs.
The properties definition interface allows the option for automatic
settings UI generation (which will make simple plugins easier to develop
without the need for user interface), as well as allow real-time
property editing of values of things like sources/outputs/etc without
having to open property dialogs. More property types can be added in
the future as needed as well.
Reduce and simplify the UI export interface. Having to export functions
with designated names was a bit silly for this case, it makes more sense
for inputs/outputs/etc because they have more functions associated with
them, but in this case the callback can be retrieved simply through the
enumeration exports. Makes it a bit easier and a little less awkward
for this situation.
Also, changed the exports and names to be a bit more consistent,
labelling them both as either "modal" or "modeless", and changed the UI
function calls to obs_exec_ui and obs_create_ui to imply modal/modeless
functionality a bit more.
I realized that I had intended modeless UI to be usable by plugins, but
it had been pointed out to me that modeless really needs to return a
pointer/handle to the user interface object that was created.
The ui_enum function gets a const struct obs_ui_info **, which basically
means it expects static data to be used. I originally had it the other
way around, but yea, it's probably not a good idea, so I'm going to
revert back to the original code instead, which doesn't rely on the data
being static.
Made it so that enum_ui returns a const pointer to a structure rather
than require an actual structure.
Changed a few of the descriptions that I missed.
Add the ability to be able to call and use toolkit-specific or
program-specific user interface in modules.
User interface code can be either bundled with the module, or 'split'
out in to separate libraries (recommended).
There are three reasons why splitting is recommended:
1.) It allows plugins to be able to create custom user interface for
each toolkit if desired.
2.) Often, UI will be programmed in one language (the language of the
toolkit), and core logic may be programmed in another. This
allows plugins to keep the languages separated if necessary.
3.) It prevents direct linkage of UI toolkits libraries with core
module logic.
Splitting is not required, though is recommended if you want your plugin
to be more flexible with other user interface toolkits or programs.
Will implement a generic properties lookup next, which will be used for
automatic UI handling so that plugin UI isn't necessarily required.
Scene items previously were removed by calling obs_sceneitem_destroy,
but this proved to be a potential race condition where two different
threads could try to destroy the same scene item at the same time.
Instead of doing that, reference counting is now used on scene items,
and an explicit obs_sceneitem_remove function is used instead for item
removal, which sets a 'removed' variable to ensure it can only be called
exactly one time.
The previous commit used the scene as a parameter to check to see if
the scene item was still present within the scene before destroying, but
this was actually unnecessary because the fault was because the destroy
signal was being triggered *before* the scene's mutex locked, thus
causing a race condition. I changed the code so that it signals after
the lock instead of before, so the scene parameter should no longer be
necessary.
Fixes a deadlock when trying to remove a source from the GUI. The scene
item signal handlers would mark the source as removed which results in
the video thread also trying to run obs_sceneitem_destroy thereby
deadlocking the video thread (and the GUI thread)
- Add 'set_default' functions to obs-data.*. These functions ensure
that a paramter exists and that the parameter is of a specific type.
If not, it will create or overwrite the value with the default setting
instead.
These functions are meant to be explicitly called before using any of
the 'get' functions. The reason why it was designed this way is to
encourage defaults to be set in a single place/function.
For example, ideal usage is to create one function for your data,
"set_my_defaults(obs_data_t data)", set all the default values within
that function, and then call that function on create/update, that way
all defaults are centralized to a single place.
- Ensure that data passed to sources/encoders/outputs/etc is always
valid, and not a null value.
- While I'm remembering, fix a few defaults of the main program config
file data.
Add a fairly easy to use settings interface that can be passed to
plugins, and replaced the old character string system that was being
used before. The new data interface allows for an easier method of
getting/altering settings for plugins, and is built to be serializable
to/from JSON.
Also, removed another wxFormBuilder file that was no longer in use.
I'm doing this because I might create another data structure called
obs_data for a different purpose. That and obs_program_data feels a bit
less vague for what it does.
- Move over the last of the original settings dialog code to QT. It was
actually a bit easier to write in the QT version. wxWidgets was
definitely not ideal for that because the pages would fully
create/destroy every time.
- [Win32] Fix os_dlopen so that it only appends .dll if not present
- [MacOS] Fix name dialog text edit widget issue (it would be better if
we could just use the list widget for editing labels, will have to
look in to that in the future)
- Tweak the settings UI a bit more and make 30 FPS default
- Add a macro to convert a QString to a UTF-8 const char * string
- Rename build/plugins to build/obs-plugins
- Remove the last of the wxWidgets code
Fixed a few files that went over 80 columns, mostly just a nitpack on my
part.
libobs/obs-nix.c had a rather bad case of leading whitespace.
Also, fixed the x86 obs-studio project files so that it would properly
output to the right directory. It couldn't find libobs.lib because
obs-studio's project settings had it outputting to a different place
than the rest of the projects.
- I seem to have fixed ths issues with the main preview widget. It
seems you just need to set the right window attributes to stop it from
breaking. Though when opengl is enabled, there appears to be a weird
background glitch in the Qt stuff -- I'm not entirely sure what's
going on. Bug in Qt?
Also fixed the layout issues, and the widget now properly resizes and
centers in to its parent widget.
- Prevent the render loop from accessing data if the data isn't valid.
Because obs->data is freed before the graphics stuff, it can cause
the graphics to keep trying to query the obs->data.displays_mutex
after it had already been destroyed.
- Added some code for FFmpeg output that I'm still playing around with.
Right now I'm just trying to get it to output to file and try to
understand the FFmpeg/libav APIs. Hopefully in the future this plugin
can be used for any sort of output to FFmpeg.
- Fixed a cast warning in audio-io.c with size_t -> uint32_t
- Renamed the 'video_info' and 'audio_info' structures to
'video_conver_info' and 'audio_convert_info' to better represent their
actual purpose, and to avoid confusion with 'audio_output_info' and
'video_output_info' structures.
- Removed a few macros from obs-def.h that were at one point going to be
used but no longer going to be used (at least for now)
Just a minor fix mostly because I noticed that I kept accidentally
forgetting to add checks to the code properly. This is one of those
cases where macros come in useful, as macros can automate the process
and help prevent these mistakes from happening by accident.
Changed the comments to properly reflect the new callbacks, as I had
forgotten to update the comments for them both.
Also, changed "setbitrate" and "request_keyframe" return values to be
boolean.
- First, I redid the output interface for libobs. I feel like it's
going in a pretty good direction in terms of design.
Right now, the design is so that outputs and encoders are separate.
One or more outputs can connect to a specific encoder to receive its
data, or the output can connect directly to raw data from libobs
output itself, if the output doesn't want to use a designated encoder.
Data is received via callbacks set when you connect to the encoder or
raw output. Multiple outputs can receive the data from a single
encoder context if need be (such as for streaming to multiple channels
at once, and/or recording with the same data).
When an encoder is first connected to, it will connect to raw output,
and start encoding. Additional connections will receive that same
data being encoded as well after that. When the last encoder has
disconnected, it will stop encoding. If for some reason the encoder
needs to stop, it will use the callback with NULL to signal that
encoding has stopped. Some of these things may be subject to change
in the future, though it feels pretty good with this design so far.
Will have to see how well it works out in practice versus theory.
- Second, Started adding preliminary RTMP/x264 output plugin code.
To speed things up, I might just make a direct raw->FFmpeg output to
create a quick output plugin that we can start using for testing all
the subsystems.
Completely revamped the entire media i/o data and handlers. The
original idea was to have a system that would have connecting media
inputs and outputs, but at a certain point I realized that this was an
unnecessary complexity for what we wanted to do. (Also, it reminded me
of directshow filters, and I HATE directshow with a passion, and
wouldn't wish it upon my greatest enemy)
Now, audio/video outputs are connected to directly, with better callback
handlers, and will eventually have the ability to automatically handle
conversions such as 4:4:4 to 4:2:0 when connecting to an input that uses
them. Doing this will allow the video/audio i/o handlers to also
prevent duplicate conversion, as well as make it easier/simple to use.
My true goal for this is to make output and encoder plugins as simple to
create as possible. I want to be able to be able to create an output
plugin with almost no real hassle of having to worry about image
conversions, media inputs/outputs, etc. A plugin developer shouldn't
have to handle that sort of stuff when he/she doesn't really need to.
Plugins will be able to simply create a callback via obs_video() and/or
obs_audio(), and they will automatically receive the audio/video data in
the formats requested via a simple callback, without needing to do
almost anything else at all.
When the first async video frame is used it would not set audio timing,
moved that code into obs_source_getframe. Also, might consider renaming
obs_source_getframe. "Query frame" instead perhaps? Will sleep on it,
might not even bother.
- Add preliminary (yet to be tested) handling of timestamp invalidation
issues that can happen with specific devices, where timestamps can
reset or go backward/forward in time with no rhyme or reason. Spent
the entire day just trying to figure out the best way to handle this.
If both audio and video are present, it will increment a reference
counter if video timestamps invalidate, and decrement the reference
counter when the audio timestamps invalidate. When the reference
counter is not 0, it will not send audio as the audio will have
invalid timing. What this does is it ensures audio data will never go
out of bounds in relation to the video, and waits for both audio and
video timestamps to "jump" together before resuming audio.
- Moved async video frame timing adjustment code into
obs_source_getframe instead so it's automatically handled whenever
called.
- Removed the 'audio wait buffer' as it was an unnecessary complexity
that could have had problems in the future. Instead, audio will not
be added until video starts for sources that have both async
audio/video. Audio could have buffered for too long of a time anyway,
who knows what devices are going to do.
- Fixed a minor conversion warning in audio-io.c