This makes it easier to do two things:
1.) Get the skipped frames count relative to each specific output
2.) Make it so that getting the 'current' log will always contain
information about skipped frames. Before, you'd have to force the
user to restart the program and get the last log, which was really
annoying when you just wanted to see how the encoders were
performing.
Instead of having functions like obs_signal_handler() that can fail to
properly specify their actual intent in the name (does it signal a
handler, or does it return a signal handler?), always prefix functions
that are meant to get information with 'get' to make its functionality
more explicit.
Previous names: New names:
-----------------------------------------------------------
obs_audio obs_get_audio
obs_video obs_get_video
obs_signalhandler obs_get_signal_handler
obs_prochandler obs_get_proc_handler
obs_source_signalhandler obs_source_get_signal_handler
obs_source_prochandler obs_source_get_proc_handler
obs_output_signalhandler obs_output_get_signal_handler
obs_output_prochandler obs_output_get_proc_handler
obs_service_signalhandler obs_service_get_signal_handler
obs_service_prochandler obs_service_get_proc_handler
API Removed:
- graphics_t obs_graphics();
Replaced With:
- void obs_enter_graphics();
- void obs_leave_graphics();
Description:
obs_graphics() was somewhat of a pointless function. The only time
that it was ever necessary was to pass it as a parameter to
gs_entercontext() followed by a subsequent gs_leavecontext() call after
that. So, I felt that it made a bit more sense just to implement
obs_enter_graphics() and obs_leave_graphics() functions to do the exact
same thing without having to repeat that code. There's really no need
to ever "hold" the graphics pointer, though I suppose that could change
in the future so having a similar function come back isn't out of the
question.
Still, this at least reduces the amount of unnecessary repeated code for
the time being.
Changed:
- obs_source_gettype
To:
- enum obs_source_type obs_source_get_type(obs_source_t source);
- const char *obs_source_get_id(obs_source_t source);
This function was inconsistent for a number of reasons. First, it
returns both the ID and the type of source (input/transition/filter),
which is inconsistent with the name of "get type". Secondly, the
'squishy' naming convention which has just turned out to be bad
practice and causes inconsistencies. So it's now replaced with two
functions that just return the type and the ID.
Changed API:
- char *obs_find_plugin_file(const char *sub_path);
Changed to: char *obs_module_file(const char *file);
Cahnge it so you no longer need to specify a sub-path such as:
obs_find_plugin_file("module_name/file.ext")
Instead, now automatically handle the module data path so all you need
to do is:
obs_module_file("file.ext")
- int obs_load_module(const char *name);
Changed to: int obs_open_module(obs_module_t *module,
const char *path,
const char *data_path);
bool obs_init_module(obs_module_t module);
Change the module loading API so that if the front-end chooses, it can
load modules directly from a specified path, and associate a data
directory with it on the spot.
The module will not be initialized immediately; obs_init_module must
be called on the module pointer in order to fully initialize the
module. This is done so a module can be disabled by the front-end if
the it so chooses.
New API:
- void obs_add_module_path(const char *bin, const char *data);
These functions allow you to specify new module search paths to add,
and allow you to search through them, or optionally just load all
modules from them. If the string %module% is included, it will
replace it with the module's name when that string is used as a
lookup. Data paths are now directly added to the module's internal
storage structure, and when obs_find_module_file is used, it will look
up the pointer to the obs_module structure and get its data directory
that way.
Example:
obs_add_module_path("/opt/obs/my-modules/%module%/bin",
"/opt/obs/my-modules/%module%/data");
This would cause it to additionally look for the binary of a
hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so
(or libfoo.so), and then look for the data in
/opt/obs/my-modules/foo/data.
This gives the front-end more flexibility for handling third-party
plugin modules, or handling all plugin modules in a custom way.
- void obs_find_modules(obs_find_module_callback_t callback, void
*param);
This searches the existing paths for modules and calls the callback
function when any are found. Useful for plugin management and custom
handling of the paths by the front-end if desired.
- void obs_load_all_modules(void);
Search through the paths and both loads and initializes all modules
automatically without custom handling.
- void obs_enum_modules(obs_enum_module_callback_t callback,
void *param);
Enumerates currently opened modules.
The version macro that modules use to compile versus the actual core
version that may be in use may be different, so this is a way to compare
them to check for compatibility issues later on.
Changed API functions:
libobs: obs_reset_video
Before, video initialization returned a boolean, but "failed" is too
little information, if it fails due to lack of device capabilities or
bad video device parameters, the front-end needs to know that.
The OBS Basic UI has also been updated to reflect this API change.
There was no need to call the context free function in the
initialization function, and it's safer to just initialize the memory to
0 before using (which also negates the need for da_init)
This just ensures that if an obs object is renamed that the pointer to
older names will still be valid. Prevents renames from causing any
invalid memory access.
When the obs object is destroyed, so are the cached names.
The module callback obs_module_set_locale will be called after loading
the module, and any time the locale is manually changed via core API.
When this function is called, the module is expected to load new text
lookup values for all the text it uses based upon the current locale.
This API is used to set the current locale for libobs, which it will set
for all modules when a module is loaded or specifically when the locale
is manually changed.
This replaces the older code which simply queried the max volume level
value for any given audio.
I'm still not 100% sure on if this is how I want to approach the
problem, particularly, whether this should be done in obs_source or in
audio_line, but it can always be moved later if needed.
This uses the calculations by the awesome Bill Hamilton that OBS1 used
for its volume levels. It calculates the current max (level),
magnitude, and current peak. This data then can be used to create
awesome volume meter controls later on.
NOTE: Will probably need optimization, does one float at a time right
now.
Also, change some of the naming conventions. I actually need to change
a lot of the naming conventions in general so that all words are
separated by underscores. Kind of a bad practice there on my part.
Not entirely sure how this happened but I *think* that a null source was
somehow being added to the list of user sources for one particular user,
and then I noticed this code does not check to see whether the source is
null or not.
- Add volume control
These volume controls are basically nothing more than sliders. They
look terrible and hopefully will be as temporary as they are
terrible.
- Allow saving of specific non-user sources via obs_load_source and
obs_save_source functions.
- Save data of desktop/mic audio sources (sync data, volume data, etc),
and load the data on startup.
- Make it so that a scene is created by default if first time using the
application. On certain operating systems where supported, a default
capture will be created. Desktop capture on mac, particularly. Not
sure what to do about windows because monitor capture on windows 7 is
completely terrible and is bad to start users off with.
This saves scenes/sources from json on exit, and properly loads it back
up when starting up the program again, as well as the currently active
scene.
I had to add a 'load' and 'save' callback to the source interface
structure because I realizes that certain sources (such as scenes)
operate different with their saved data; scenes for example would have
to keep track of their settings information constantly, and that was
somewhat unacceptable to make it functional.
The optional 'load' callback will be called only after having loaded
setttings specifically from file/imported data, and the 'save' function
will be called only specifically when data actually needs to be saved.
I also had to adjust the obs_scene code so that it's a regular input
source type now, and I also modified it so that it doesn't have some
strange custom creation code anymore. The obs_scene_create function is
now simply just a wrapper for obs_source_create. You could even create
a scene with obs_source_create manually as well.
- Updated the services API so that it links up with an output and
the output gets data from that service rather than via settings.
This allows the service context to have control over how an output is
used, and makes it so that the URL/key/etc isn't necessarily some
static setting.
Also, if the service is attached to an output, it will stick around
until the output is destroyed.
- The settings interface has been updated so that it can allow the
usage of service plugins. What this means is that now you can create
a service plugin that can control aspects of the stream, and it
allows each service to create their own user interface if they create
a service plugin module.
- Testing out saving of current service information. Saves/loads from
JSON in to obs_data_t, seems to be working quite nicely, and the
service object information is saved/preserved on exit, and loaded
again on startup.
- I agonized over the settings user interface for days, and eventually
I just decided that the only way that users weren't going to be
fumbling over options was to split up the settings in to simple/basic
output, pre-configured, and then advanced for advanced use (such as
multiple outputs or services, which I'll implement later).
This was particularly painful to really design right, I wanted more
features and wanted to include everything in one interface but
ultimately just realized from experience that users are just not
technically knowledgable about it and will end up fumbling with the
settings rather than getting things done.
Basically, what this means is that casual users only have to enter in
about 3 things to configure their stream: Stream key, audio bitrate,
and video bitrate. I am really happy with this interface for those
types of users, but it definitely won't be sufficient for advanced
usage or for custom outputs, so that stuff will have to be separated.
- Improved the JSON usage for the 'common streaming services' context,
I realized that JSON arrays are there to ensure sorting, while
forgetting that general items are optimized for hashing. So
basically I'm just using arrays now to sort items in it.
Add API for streaming services. The services API simplifies the
creation of custom service features and user interface.
Custom streaming services later on will be able to do things such as:
- Be able to use service-specific APIs via modules, allowing a more
direct means of communicating with the service and requesting or
setting service-specific information
- Get URL/stream key via other means of authentication such as OAuth,
or be able to build custom URLs for services that require that sort
of thing.
- Query information (such as viewer count, chat, follower
notifications, and other information)
- Set channel information (such as current game, current channel title,
activating commercials)
Also, I reduce some repeated code that was used for all libobs objects.
This includes the name of the object, the private data, settings, as
well as the signal and procedure handlers.
I also switched to using linked lists for the global object lists,
rather than using an array of pointers (you could say it was..
pointless.) ..Anyway, the linked list info is also stored in the shared
context data structure.
- Implement the RTMP output module. This time around, we just use a
simple FLV muxer, then just write to the stream with RTMP_Write.
Easy and effective.
- Fix the FLV muxer, the muxer now outputs proper FLV packets.
- Output API:
* When using encoders, automatically interleave encoded packets
before sending it to the output.
* Pair encoders and have them automatically wait for the other to
start to ensure sync.
* Change 'obs_output_signal_start_fail' to 'obs_output_signal_stop'
because it was a bit confusing, and doing this makes a lot more
sense for outputs that need to stop suddenly (disconnections/etc).
- Encoder API:
* Remove some unnecessary encoder functions from the actual API and
make them internal. Most of the encoder functions are handled
automatically by outputs anyway, so there's no real need to expose
them and end up inadvertently confusing plugin writers.
* Have audio encoders wait for the video encoder to get a frame, then
start at the exact data point that the first video frame starts to
ensure the most accrate sync of video/audio possible.
* Add a required 'frame_size' callback for audio encoders that
returns the expected number of frames desired to encode with. This
way, the libobs encoder API can handle the circular buffering
internally automatically for the encoder modules, so encoder
writers don't have to do it themselves.
- Fix a few bugs in the serializer interface. It was passing the wrong
variable for the data in a few cases.
- If a source has video, make obs_source_update defer the actual update
callback until the tick function is called to prevent threading
issues.
- Add some temporary streaming code using FFmpeg. FFmpeg itself is not
very ideal for streaming; lack of direct control of the sockets and
no framedrop handling means that FFmpeg is definitely not something
you want to use without wrapper code. I'd prefer writing my own
network framework in this particular case just because you give away
so much control of the network interface. Wasted an entire day
trying to go through FFmpeg issues.
There's just no way FFmpeg should be used for real streaming (at
least without being patched or submitting some sort of patch, but I'm
sort of feeling "meh" on that idea)
I had to end up writing multiple threads just to handle both
connecting and writing, because av_interleaved_write_frame blocks
every call, stalling the main encoder thread, and thus also stalling
draw signals.
- Add some temporary user interface for streaming settings. This is
just temporary for the time being. It's in the outputs section of
the basic-mode settings
- Make it so that dynamic arrays do not free all their data when the
size just happens to be reduced to 0. This prevents constant
reallocation when an array keeps going from 1 item to 0 items. Also,
it was bad to become dependent upon that functionality. You must now
always explicitly call "free" on it to ensure the data is free, and
that's how it should be. Implicit functionality can lead to
confusion and maintainability issues.
- Fix a bug where the initial audio data insertion would cause all
audio data to unintentionally clear (mixed up < and > operators, damn
human error)
- Fixed a potential interdependant lock scenario with channel mutex
locks and graphics mutex locks. The main video thread could lock the
graphics mutex and then while in the graphics mutex could lock the
channels mutex. Meanwhile in another thread, the channel mutex could
get locked, and then the graphics mutex would get locked, causing a
deadlock.
The best way to deal with this is to not let mutexes lock within
other mutexes, but sometimes it's difficult to avoid such as in the
main video thread.
- Audio devices should now be functional, and the devices in the audio
settings can now be changed as desired.
- Signals and dynamic callbacks now require declarations to be made
before being used. What this does is allows us to get information
about the functions dynamically which can be relayed to the user and
plugins for future extended usage (this should have big implications
later for scripting in particular, hopefully).
- Reduced the number of types calldata uses from "everything I could
think of" to simply integer, float, bool, pointer/object, string.
Integer data is now stored as long long. Floats are now stored as
doubles (check em).
- Use a more consistent naming scheme for lexer error/warning macros.
- Fixed a rather nasty bug where switching to an existing scene would
cause it to increment sourceSceneRefs, which would mean that it would
never end up never properly removing the source when the user clicks
removed (stayed in limbo, obs_source_remove never got called)
Split off activate to activate and show callbacks, and split off
deactivate to deactivate and hide callbacks. Sources didn't previously
have a means to know whether it was actually being displayed in the main
view or just happened to be visible somewhere. Now, for things like
transition sources, they have a means of knowing when they have actually
been "activated" so they can initiate their sequence.
A source is now only considered "active" when it's being displayed by
the main view. When a source is shown in the main view, the activate
callback/signal is triggered. When it's no longer being displayed by
the main view, deactivate callback/signal is triggered.
When a source is just generally visible to see by any view, the show
callback/signal is triggered. If it's no longer visible by any views,
then the hide callback/signal is triggered.
Presentation volume will now only be active when a source is active in
the main view rather than also in auxilary views.
Also fix a potential bug where parents wouldn't properly increment or
decrement all the activation references of a child source when a child
was added or removed.
This allows the changing of bideo settings without having to completely
reset all graphics data. Will recreate internal output/conversion
buffers and such and reset the main preview.
Now sources will be properly activated and deactivated when they are in
use or not in use.
Had to figure out a way to handle child sources, and children of
children, just ended up implementing simple functions that parents use
to signal adding/removal to help with hierarchial activation and
deactivation of child sources.
To prevent the source activate/deactivate callbacks from being called
more than once, added an activation reference counter. The first
increment will call the activate callback, and the last decrement will
call the deactivate callback.
Added "source-activate" and "source-deactivate" signals to the main obs
signal handler, and "activate" and "deactivate" to individual source
signal handlers.
Also, fixed the main window so it properly selects a source when the
current active scene has been changed.
Added a "master" volume for the entire audio subsystem.
Also, added a "presentation" volume for both the master volume and for
each invidiaul source. The presentation volume is used to control
things like transitioning volumes, preventing sources from outputting
any audio when they're inactive, as well as some other uses in the
future.
- Changed glMapBuffer to glMapBufferRange to allow invalidation. Using
just glMapBuffer alone was causing some unacceptable stalls.
- Changed dynamic buffers from GL_DYNAMIC_WRITE to GL_STREAM_WRITE
because I had misunderstood the OpenGL specification
- Added _OPENGL and _D3D11 builtin preprocessor macros to effects to
allow special processing if needed
- Added fmod support to shaders (NOTE: D3D and GL do not function
identically with negative numbers when using this. Positive numbers
however function identically)
- Created a planar conversion shader that converts from packed YUV to
planar 420 right on the GPU without any CPU processing. Reduces
required GPU download size to approximately 37.5% of its normal rate
as well. GPU usage down by 10 entire percentage points despite the
extra required pass.
There were a *lot* of warnings, managed to remove most of them.
Also, put warning flags before C_FLAGS and CXX_FLAGS, rather than after,
as -Wall -Wextra was overwriting flags that came before it.
Originally, the rendering system was designed to only display sources
and such, but I realized there would be a flaw; if you wanted to render
the main viewport in a custom way, or maybe even the entire application
as a graphics-based front end, you wouldn't have been able to do that.
Displays have now been separated in to viewports and displays. A
viewport is used to store and draw sources, a display is used to handle
draw callbacks. You can even use displays without using viewports to
draw custom render displays containing graphics calls if you wish, but
usually they would be used in combination with source viewports at
least.
This requires a tiny bit more work to create simple source displays, but
in the end its worth it for the added flexibility and options it brings.
The API used to be designed in such a way to where it would expect
exports for each individual source/output/encoder/etc. You would export
functions for each and it would automatically load those functions based
on a specific naming scheme from the module.
The idea behind this was that I wanted to limit the usage of structures
in the API so only functions could be used. It was an interesting idea
in theory, but this idea turned out to be flawed in a number of ways:
1.) Requiring exports to create sources/outputs/encoders/etc meant that
you could not create them by any other means, which meant that
things like faruton's .net plugin would become difficult.
2.) Export function declarations could not be checked, therefore if you
created a function with the wrong parameters and parameter types,
the compiler wouldn't know how to check for that.
3.) Required overly complex load functions in libobs just to handle it.
It makes much more sense to just have a load function that you call
manually. Complexity is the bane of all good programs.
4.) It required that you have functions of specific names, which looked
and felt somewhat unsightly.
So, to fix these issues, I replaced it with a more commonly used API
scheme, seen commonly in places like kernels and typical C libraries
with abstraction. You simply create a structure that contains the
callback definitions, and you pass it to a function to register that
definition (such as obs_register_source), which you call in the
obs_module_load of the module.
It will also automatically check the structure size and ensure that it
only loads the required values if the structure happened to add new
values in an API change.
The "main" source file for each module must include obs-module.h, and
must use OBS_DECLARE_MODULE() within that source file.
Also, started writing some doxygen documentation in to the main library
headers. Will add more detailed documentation as I go.