This makes a minor adjustment to the interval at which the inject helper
tries to post the inject message to the target process. Only 2 seconds
before, now up to 4 seconds, with the PostThreadMessage called every
half second for the duration.
The reason I did this is because I noticed that on rare occasions that
it wouldn't hook due to the low interval; usually just because the
target process is busy and isn't able to process its message queue, and
therefor the hook wouldn't go through due to the fact that
SetWindowsHookEx won't inject until the set event has occurred. The
inject helper program would just close before the thread message had
finally been processed, which would cancel the SetWindowsHookEx hooking.
The code neglected to take in to account that start_capture can also be
called when the texture updates its size/format in the hook and 'ready'
is signaled again, so it's possible that existing variables in the game
capture structure could be overwritten with new ones unintentionally.
The game capture 'Activate' button is likely to fool users in to
thinking it's not actually active if the game capture displays black, so
if it's active, rename the button to 'Reactivate' in order to sort of
hint at the user that it's actually active.
This is a bit of an optimization to reduce load a little bit if any of
the video capture sources are not currently being displayed on the
screen. They will simply not capture or update their texture data if
they are not currently being shown anywhere.
The mac and window game capture sources don't really apply due to the
fact that their textures aren't updated on the source's end (they update
inside of the hooks).
Uses the output duplicator API in order to get a high performance
monitor capture on windows 8+. This is actually designed to be
interchangeable with regular GDI-based monitor capture (uses the same
source id).
This adds the windows version of game capture.
New features:
- An option to hook any fullscreen application automatically (that
doesn't have borders) so that no specific window configuration is
required. Definitely a sorely needed feature
- An option to force memory capture for the sake of compatibility with
things such as SLI, multi-adapter setups (usually laptops), as well as
the ability to be used with the OpenGL renderer
- An optimization option to force scaling on the GPU before texture
transfer, reducing the transfer bandwidth (which is especially
important for compatibility capture)
- An optimization option to limit framerate to the current OBS framerate
to improve capture performance (mostly useful for compatibility
capture)
- An option to capture third-party overlays (such as steam)
- Logging improvements, game capture log will now be sent via pipe
instead of written to a separate file, making diagnosing problems a
little bit easier
This library is a completely refactored and rewritten version of the
original graphics hook. The code is more clean, readable, and has a
variety of new features, such as scaling and forcing memory capture.
Currently, only D3D9, 10, and 11 are implemented. (This commit may be
updated on this branch)
Before, game capture would find addresses to important graphics
functions by creating a graphics context for the desired API inside of
the hook, and then find the function addresses that way.
The big problem with that is that the context could often cause the
hooked application to crash, especially if another hook was active.
This bypasses that entire need by a simple console application that
creates the contexts, finds the hook address offsets and then returns
them via console output.
This header contains global defines, structures, and helper inline
functions for the graphics hook that will be shared between game
capture, the hook, and the get-graphics-addrs helper application.
These functions allow the safe hooking of windows functions,
specifically windows API functions that may or may not have built-in
machine code to help aid in reverse chain hooks.
If a new hook is applied to an existing forward hook, that hook will be
preserved to prevent that new hook's data from being removed
unintentionally.
Hopefully with all these precautions this will reduce the likelihood of
crashes and abnormal hook behavior, while allowing existing hooks to be
preserved, and allowing new hooks to be applied.
This fixes a bug where if INCLUDE_MINIMIZED was set and the window size
was (0, 0), the window would still be excluded from the resulting list
that was created.
This adds obfuscation functions primarily for use with GetProcAddress.
This takes an obfuscated string and uses a simple integer key to
de-obfuscate it to the intended function name string, which is then
loaded dynamically using GetProcAddress.
This is typically only used with functions such as OpenProcess,
SetWindowsHookEx, and the like, which can often be misinterpreted the
wrong way by security programs if those strings are found within the
strings segment of a scanned executable.
When getting the class/title/exe of a particular window handle in the
build_window_strings function, always set the class/title/exe pointers
to null to prevent any potential references to invalid values if any of
them do not happen to be set for whatever reason.
Because other capture methods may end up needing to share this code,
separate the window finding source code to window-helpers.c and
window-helpers.h.
This include a function to fill out a property list with windows, a
function to find a window based upon priority/title/class/exe, and a
function to decode the window title/class/exe strings from a window
setting string.
Typedef pointers are unsafe. If you do:
typedef struct bla *bla_t;
then you cannot use it as a constant, such as: const bla_t, because
that constant will be to the pointer itself rather than to the
underlying data. I admit this was a fundamental mistake that must
be corrected.
All typedefs that were pointer types will now have their pointers
removed from the type itself, and the pointers will be used when they
are actually used as variables/parameters/returns instead.
This does not break ABI though, which is pretty nice.
API Removed:
- graphics_t obs_graphics();
Replaced With:
- void obs_enter_graphics();
- void obs_leave_graphics();
Description:
obs_graphics() was somewhat of a pointless function. The only time
that it was ever necessary was to pass it as a parameter to
gs_entercontext() followed by a subsequent gs_leavecontext() call after
that. So, I felt that it made a bit more sense just to implement
obs_enter_graphics() and obs_leave_graphics() functions to do the exact
same thing without having to repeat that code. There's really no need
to ever "hold" the graphics pointer, though I suppose that could change
in the future so having a similar function come back isn't out of the
question.
Still, this at least reduces the amount of unnecessary repeated code for
the time being.
This functionality can now be handled automatically because locale can
now be freed seaparately from obs_module_unload with
obs_module_free_locale, which is called automatically when the module is
being freed.
Changed API:
- char *obs_find_plugin_file(const char *sub_path);
Changed to: char *obs_module_file(const char *file);
Cahnge it so you no longer need to specify a sub-path such as:
obs_find_plugin_file("module_name/file.ext")
Instead, now automatically handle the module data path so all you need
to do is:
obs_module_file("file.ext")
- int obs_load_module(const char *name);
Changed to: int obs_open_module(obs_module_t *module,
const char *path,
const char *data_path);
bool obs_init_module(obs_module_t module);
Change the module loading API so that if the front-end chooses, it can
load modules directly from a specified path, and associate a data
directory with it on the spot.
The module will not be initialized immediately; obs_init_module must
be called on the module pointer in order to fully initialize the
module. This is done so a module can be disabled by the front-end if
the it so chooses.
New API:
- void obs_add_module_path(const char *bin, const char *data);
These functions allow you to specify new module search paths to add,
and allow you to search through them, or optionally just load all
modules from them. If the string %module% is included, it will
replace it with the module's name when that string is used as a
lookup. Data paths are now directly added to the module's internal
storage structure, and when obs_find_module_file is used, it will look
up the pointer to the obs_module structure and get its data directory
that way.
Example:
obs_add_module_path("/opt/obs/my-modules/%module%/bin",
"/opt/obs/my-modules/%module%/data");
This would cause it to additionally look for the binary of a
hypthetical module named "foo" at /opt/obs/my-modules/foo/bin/foo.so
(or libfoo.so), and then look for the data in
/opt/obs/my-modules/foo/data.
This gives the front-end more flexibility for handling third-party
plugin modules, or handling all plugin modules in a custom way.
- void obs_find_modules(obs_find_module_callback_t callback, void
*param);
This searches the existing paths for modules and calls the callback
function when any are found. Useful for plugin management and custom
handling of the paths by the front-end if desired.
- void obs_load_all_modules(void);
Search through the paths and both loads and initializes all modules
automatically without custom handling.
- void obs_enum_modules(obs_enum_module_callback_t callback,
void *param);
Enumerates currently opened modules.
Similar to the shader functions, the effect parameter functions take
the effect as a parameter. However, the effect parameter is pretty
pointless, because the effect parameter.. parameter stores the effect
pointer interally.
The locale parameter was a mistake, because it puts extra needless
burden upon the module developer to have to handle this variable for
each and every single callback function. The parameter is being removed
in favor of a single centralized module callback function that
specifically updates locale information for a module only when needed.
Having the value stored here is somewhat pointless, so this is one step
in fixing the locale handling. Locale should be handled by the modules
themselves with their own loaded locale lookup information.
This plugin is just a generic service plugin for basic RTMP streaming
service stuff.
This just has a 'common' service that has a list of common/simple
streaming services that don't have their own custom service modules, and
then a 'custom' service that allows you to enter in the stream URL and
key manually, without a service/server list.
Also, copy the jansson VS projects file (don't modify the old one) so
that it's located in the vs/2013 directory, so that other libraries can
properly link with it without having to enter in extra information just
to include jansson
Now that we have the priorties window in we can finally be able to
select windows for capture source such as window capture. Only took
about an hour or two to write.
Also, fixed some depednency issues on winmm.lib with obs-outputs