obs-studio/libobs/obs-encoder.h

282 lines
8.3 KiB
C
Raw Permalink Normal View History

/******************************************************************************
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 07:04:50 -08:00
Copyright (C) 2013-2014 by Hugh Bailey <obs.jim@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
******************************************************************************/
#pragma once
/**
* @file
* @brief header for modules implementing encoders.
*
* Encoders are modules that implement some codec that can be used by libobs
* to process output data.
*/
#ifdef __cplusplus
extern "C" {
#endif
#define OBS_ENCODER_CAP_DEPRECATED (1 << 0)
#define OBS_ENCODER_CAP_PASS_TEXTURE (1 << 1)
#define OBS_ENCODER_CAP_DYN_BITRATE (1 << 2)
#define OBS_ENCODER_CAP_INTERNAL (1 << 3)
/** Specifies the encoder type */
enum obs_encoder_type {
OBS_ENCODER_AUDIO, /**< The encoder provides an audio codec */
OBS_ENCODER_VIDEO /**< The encoder provides a video codec */
};
/** Encoder output packet */
struct encoder_packet {
uint8_t *data; /**< Packet data */
size_t size; /**< Packet size */
int64_t pts; /**< Presentation timestamp */
int64_t dts; /**< Decode timestamp */
int32_t timebase_num; /**< Timebase numerator */
int32_t timebase_den; /**< Timebase denominator */
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
enum obs_encoder_type type; /**< Encoder type */
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
bool keyframe; /**< Is a keyframe */
/* ---------------------------------------------------------------- */
/* Internal video variables (will be parsed automatically) */
/* DTS in microseconds */
int64_t dts_usec;
/* System DTS in microseconds */
int64_t sys_dts_usec;
/**
* Packet priority
*
* This is generally use by video encoders to specify the priority
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
* of the packet.
*/
int priority;
/**
* Dropped packet priority
*
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
* If this packet needs to be dropped, the next packet must be of this
* priority or higher to continue transmission.
*/
int drop_priority;
(API Change) Add support for multiple audio mixers API changed: -------------------------- void obs_output_set_audio_encoder( obs_output_t *output, obs_encoder_t *encoder); obs_encoder_t *obs_output_get_audio_encoder( const obs_output_t *output); obs_encoder_t *obs_audio_encoder_create( const char *id, const char *name, obs_data_t *settings); Changed to: -------------------------- /* 'idx' specifies the track index of the output */ void obs_output_set_audio_encoder( obs_output_t *output, obs_encoder_t *encoder, size_t idx); /* 'idx' specifies the track index of the output */ obs_encoder_t *obs_output_get_audio_encoder( const obs_output_t *output, size_t idx); /* 'mixer_idx' specifies the mixer index to capture audio from */ obs_encoder_t *obs_audio_encoder_create( const char *id, const char *name, obs_data_t *settings, size_t mixer_idx); Overview -------------------------- This feature allows multiple audio mixers to be used at a time. This capability was able to be added with surprisingly very little extra overhead. Audio will not be mixed unless it's assigned to a specific mixer, and mixers will not mix unless they have an active mix connection. Mostly this will be useful for being able to separate out specific audio for recording versus streaming, but will also be useful for certain streaming services that support multiple audio streams via RTMP. I didn't want to use a variable amount of mixers due to the desire to reduce heap allocations, so currently I set the limit to 4 simultaneous mixers; this number can be increased later if needed, but honestly I feel like it's just the right number to use. Sources: Sources can now specify which audio mixers their audio is mixed to; this can be a single mixer or multiple mixers at a time. The obs_source_set_audio_mixers function sets the audio mixer which an audio source applies to. For example, 0xF would mean that the source applies to all four mixers. Audio Encoders: Audio encoders now must specify which specific audio mixer they use when they encode audio data. Outputs: Outputs that use encoders can now support multiple audio tracks at once if they have the OBS_OUTPUT_MULTI_TRACK capability flag set. This is mostly only useful for certain types of RTMP transmissions, though may be useful for file formats that support multiple audio tracks as well later on.
2015-01-14 02:12:08 -08:00
/** Audio track index (used with outputs) */
size_t track_idx;
(API Change) Add support for multiple audio mixers API changed: -------------------------- void obs_output_set_audio_encoder( obs_output_t *output, obs_encoder_t *encoder); obs_encoder_t *obs_output_get_audio_encoder( const obs_output_t *output); obs_encoder_t *obs_audio_encoder_create( const char *id, const char *name, obs_data_t *settings); Changed to: -------------------------- /* 'idx' specifies the track index of the output */ void obs_output_set_audio_encoder( obs_output_t *output, obs_encoder_t *encoder, size_t idx); /* 'idx' specifies the track index of the output */ obs_encoder_t *obs_output_get_audio_encoder( const obs_output_t *output, size_t idx); /* 'mixer_idx' specifies the mixer index to capture audio from */ obs_encoder_t *obs_audio_encoder_create( const char *id, const char *name, obs_data_t *settings, size_t mixer_idx); Overview -------------------------- This feature allows multiple audio mixers to be used at a time. This capability was able to be added with surprisingly very little extra overhead. Audio will not be mixed unless it's assigned to a specific mixer, and mixers will not mix unless they have an active mix connection. Mostly this will be useful for being able to separate out specific audio for recording versus streaming, but will also be useful for certain streaming services that support multiple audio streams via RTMP. I didn't want to use a variable amount of mixers due to the desire to reduce heap allocations, so currently I set the limit to 4 simultaneous mixers; this number can be increased later if needed, but honestly I feel like it's just the right number to use. Sources: Sources can now specify which audio mixers their audio is mixed to; this can be a single mixer or multiple mixers at a time. The obs_source_set_audio_mixers function sets the audio mixer which an audio source applies to. For example, 0xF would mean that the source applies to all four mixers. Audio Encoders: Audio encoders now must specify which specific audio mixer they use when they encode audio data. Outputs: Outputs that use encoders can now support multiple audio tracks at once if they have the OBS_OUTPUT_MULTI_TRACK capability flag set. This is mostly only useful for certain types of RTMP transmissions, though may be useful for file formats that support multiple audio tracks as well later on.
2015-01-14 02:12:08 -08:00
/** Encoder from which the track originated from */
obs_encoder_t *encoder;
};
/** Encoder input frame */
struct encoder_frame {
/** Data for the frame/audio */
uint8_t *data[MAX_AV_PLANES];
/** size of each plane */
uint32_t linesize[MAX_AV_PLANES];
/** Number of frames (audio only) */
uint32_t frames;
/** Presentation timestamp */
int64_t pts;
};
/**
* Encoder interface
*
* Encoders have a limited usage with OBS. You are not generally supposed to
* implement every encoder out there. Generally, these are limited or specific
* encoders for h264/aac for streaming and recording. It doesn't have to be
* *just* h264 or aac of course, but generally those are the expected encoders.
*
* That being said, other encoders will be kept in mind for future use.
*/
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 07:04:50 -08:00
struct obs_encoder_info {
/* ----------------------------------------------------------------- */
/* Required implementation*/
/** Specifies the named identifier of this encoder */
const char *id;
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
/** Specifies the encoder type (video or audio) */
enum obs_encoder_type type;
/** Specifies the codec */
const char *codec;
/**
* Gets the full translated name of this encoder
*
* @param type_data The type_data variable of this structure
* @return Translated name of the encoder
*/
const char *(*get_name)(void *type_data);
/**
* Creates the encoder with the specified settings
*
* @param settings Settings for the encoder
* @param encoder OBS encoder context
* @return Data associated with this encoder context, or
* NULL if initialization failed.
*/
void *(*create)(obs_data_t *settings, obs_encoder_t *encoder);
/**
* Destroys the encoder data
*
* @param data Data associated with this encoder context
*/
void (*destroy)(void *data);
/**
* Encodes frame(s), and outputs encoded packets as they become
* available.
*
* @param data Data associated with this encoder
* context
* @param[in] frame Raw audio/video data to encode
* @param[out] packet Encoder packet output, if any
* @param[out] received_packet Set to true if a packet was received,
* false otherwise
* @return true if successful, false otherwise.
*/
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
bool (*encode)(void *data, struct encoder_frame *frame,
struct encoder_packet *packet, bool *received_packet);
Implement RTMP module (still needs drop code) - Implement the RTMP output module. This time around, we just use a simple FLV muxer, then just write to the stream with RTMP_Write. Easy and effective. - Fix the FLV muxer, the muxer now outputs proper FLV packets. - Output API: * When using encoders, automatically interleave encoded packets before sending it to the output. * Pair encoders and have them automatically wait for the other to start to ensure sync. * Change 'obs_output_signal_start_fail' to 'obs_output_signal_stop' because it was a bit confusing, and doing this makes a lot more sense for outputs that need to stop suddenly (disconnections/etc). - Encoder API: * Remove some unnecessary encoder functions from the actual API and make them internal. Most of the encoder functions are handled automatically by outputs anyway, so there's no real need to expose them and end up inadvertently confusing plugin writers. * Have audio encoders wait for the video encoder to get a frame, then start at the exact data point that the first video frame starts to ensure the most accrate sync of video/audio possible. * Add a required 'frame_size' callback for audio encoders that returns the expected number of frames desired to encode with. This way, the libobs encoder API can handle the circular buffering internally automatically for the encoder modules, so encoder writers don't have to do it themselves. - Fix a few bugs in the serializer interface. It was passing the wrong variable for the data in a few cases. - If a source has video, make obs_source_update defer the actual update callback until the tick function is called to prevent threading issues.
2014-04-07 22:00:10 -07:00
/** Audio encoder only: Returns the frame size for this encoder */
size_t (*get_frame_size)(void *data);
Implement RTMP module (still needs drop code) - Implement the RTMP output module. This time around, we just use a simple FLV muxer, then just write to the stream with RTMP_Write. Easy and effective. - Fix the FLV muxer, the muxer now outputs proper FLV packets. - Output API: * When using encoders, automatically interleave encoded packets before sending it to the output. * Pair encoders and have them automatically wait for the other to start to ensure sync. * Change 'obs_output_signal_start_fail' to 'obs_output_signal_stop' because it was a bit confusing, and doing this makes a lot more sense for outputs that need to stop suddenly (disconnections/etc). - Encoder API: * Remove some unnecessary encoder functions from the actual API and make them internal. Most of the encoder functions are handled automatically by outputs anyway, so there's no real need to expose them and end up inadvertently confusing plugin writers. * Have audio encoders wait for the video encoder to get a frame, then start at the exact data point that the first video frame starts to ensure the most accrate sync of video/audio possible. * Add a required 'frame_size' callback for audio encoders that returns the expected number of frames desired to encode with. This way, the libobs encoder API can handle the circular buffering internally automatically for the encoder modules, so encoder writers don't have to do it themselves. - Fix a few bugs in the serializer interface. It was passing the wrong variable for the data in a few cases. - If a source has video, make obs_source_update defer the actual update callback until the tick function is called to prevent threading issues.
2014-04-07 22:00:10 -07:00
/* ----------------------------------------------------------------- */
/* Optional implementation */
Revamp API and start using doxygen The API used to be designed in such a way to where it would expect exports for each individual source/output/encoder/etc. You would export functions for each and it would automatically load those functions based on a specific naming scheme from the module. The idea behind this was that I wanted to limit the usage of structures in the API so only functions could be used. It was an interesting idea in theory, but this idea turned out to be flawed in a number of ways: 1.) Requiring exports to create sources/outputs/encoders/etc meant that you could not create them by any other means, which meant that things like faruton's .net plugin would become difficult. 2.) Export function declarations could not be checked, therefore if you created a function with the wrong parameters and parameter types, the compiler wouldn't know how to check for that. 3.) Required overly complex load functions in libobs just to handle it. It makes much more sense to just have a load function that you call manually. Complexity is the bane of all good programs. 4.) It required that you have functions of specific names, which looked and felt somewhat unsightly. So, to fix these issues, I replaced it with a more commonly used API scheme, seen commonly in places like kernels and typical C libraries with abstraction. You simply create a structure that contains the callback definitions, and you pass it to a function to register that definition (such as obs_register_source), which you call in the obs_module_load of the module. It will also automatically check the structure size and ensure that it only loads the required values if the structure happened to add new values in an API change. The "main" source file for each module must include obs-module.h, and must use OBS_DECLARE_MODULE() within that source file. Also, started writing some doxygen documentation in to the main library headers. Will add more detailed documentation as I go.
2014-02-12 07:04:50 -08:00
/**
* Gets the default settings for this encoder
*
* @param[out] settings Data to assign default settings to
*/
void (*get_defaults)(obs_data_t *settings);
/**
* Gets the property information of this encoder
*
* @return The properties data
*/
obs_properties_t *(*get_properties)(void *data);
/**
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
* Updates the settings for this encoder (usually used for things like
* changing bitrate while active)
*
* @param data Data associated with this encoder context
* @param settings New settings for this encoder
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
* @return true if successful, false otherwise
*/
bool (*update)(void *data, obs_data_t *settings);
/**
* Returns extra data associated with this encoder (usually header)
*
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
* @param data Data associated with this encoder context
* @param[out] extra_data Pointer to receive the extra data
* @param[out] size Pointer to receive the size of the extra
* data
* @return true if extra data available, false
* otherwise
*/
bool (*get_extra_data)(void *data, uint8_t **extra_data, size_t *size);
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
/**
* Gets the SEI data, if any
*
* @param data Data associated with this encoder context
* @param[out] sei_data Pointer to receive the SEI data
* @param[out] size Pointer to receive the SEI data size
* @return true if SEI data available, false otherwise
*/
bool (*get_sei_data)(void *data, uint8_t **sei_data, size_t *size);
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
/**
* Returns desired audio format and sample information
*
* @param data Data associated with this encoder context
* @param[in/out] info Audio format information
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
*/
void (*get_audio_info)(void *data, struct audio_convert_info *info);
Implement encoder interface (still preliminary) - Implement OBS encoder interface. It was previously incomplete, but now is reaching some level of completion, though probably should still be considered preliminary. I had originally implemented it so that encoders only have a 'reset' function to reset their parameters, but I felt that having both a 'start' and 'stop' function would be useful. Encoders are now assigned to a specific video/audio media output each rather than implicitely assigned to the main obs video/audio contexts. This allows separate encoder contexts that aren't necessarily assigned to the main video/audio context (which is useful for things such as recording specific sources). Will probably have to do this for regular obs outputs as well. When creating an encoder, you must now explicitely state whether that encoder is an audio or video encoder. Audio and video can optionally be automatically converted depending on what the encoder specifies. When something 'attaches' to an encoder, the first attachment starts the encoder, and the encoder automatically attaches to the media output context associated with it. Subsequent attachments won't have the same effect, they will just start receiving the same encoder data when the next keyframe plays (along with SEI if any). When detaching from the encoder, the last detachment will fully stop the encoder and detach the encoder from the media output context associated with the encoder. SEI must actually be exported separately; because new encoder attachments may not always be at the beginning of the stream, the first keyframe they get must have that SEI data in it. If the encoder has SEI data, it needs only add one small function to simply query that SEI data, and then that data will be handled automatically by libobs for all subsequent encoder attachments. - Implement x264 encoder plugin, move x264 files to separate plugin to separate necessary dependencies. - Change video/audio frame output structures to not use const qualifiers to prevent issues with non-const function usage elsewhere. This was an issue when writing the x264 encoder, as the x264 encoder expects non-const frame data. Change stagesurf_map to return a non-const data type to prevent this as well. - Change full range parameter of video scaler to be an enum rather than boolean
2014-03-16 16:21:34 -07:00
/**
* Returns desired video format information
*
* @param data Data associated with this encoder context
* @param[in/out] info Video format information
*/
void (*get_video_info)(void *data, struct video_scale_info *info);
void *type_data;
void (*free_type_data)(void *type_data);
uint32_t caps;
/**
* Gets the default settings for this encoder
2022-07-24 07:48:20 -07:00
*
* If get_defaults is also defined both will be called, and the first
* call will be to get_defaults, then to get_defaults2.
*
* @param[out] settings Data to assign default settings to
* @param[in] typedata Type Data
*/
void (*get_defaults2)(obs_data_t *settings, void *type_data);
/**
* Gets the property information of this encoder
*
* @param[in] data Pointer from create (or null)
* @param[in] typedata Type Data
* @return The properties data
*/
obs_properties_t *(*get_properties2)(void *data, void *type_data);
bool (*encode_texture)(void *data, uint32_t handle, int64_t pts,
uint64_t lock_key, uint64_t *next_key,
struct encoder_packet *packet,
bool *received_packet);
};
EXPORT void obs_register_encoder_s(const struct obs_encoder_info *info,
size_t size);
/**
* Register an encoder definition to the current obs context. This should be
* used in obs_module_load.
*
* @param info Pointer to the source definition structure.
*/
#define obs_register_encoder(info) \
obs_register_encoder_s(info, sizeof(struct obs_encoder_info))
#ifdef __cplusplus
}
#endif