337 lines
8.1 KiB
C++
337 lines
8.1 KiB
C++
#ifndef INTERVAL_H
|
|
#define INTERVAL_H
|
|
|
|
#include "../util/utility.h"
|
|
#include <limits>
|
|
|
|
// For interval arithmetic
|
|
struct Interval {
|
|
// Both inclusive
|
|
float min;
|
|
float max;
|
|
|
|
inline Interval() :
|
|
min(0),
|
|
max(0) {}
|
|
|
|
inline Interval(float p_min, float p_max) :
|
|
min(p_min),
|
|
max(p_max) {
|
|
#if DEBUG_ENABLED
|
|
CRASH_COND(p_min > p_max);
|
|
#endif
|
|
}
|
|
|
|
inline Interval(const Interval &other) :
|
|
min(other.min),
|
|
max(other.max) {}
|
|
|
|
inline static Interval from_single_value(float p_val) {
|
|
return Interval(p_val, p_val);
|
|
}
|
|
|
|
inline static Interval from_infinity() {
|
|
return Interval(
|
|
-std::numeric_limits<float>::infinity(),
|
|
std::numeric_limits<float>::infinity());
|
|
}
|
|
|
|
inline bool contains(float v) const {
|
|
return v >= min && v <= max;
|
|
}
|
|
|
|
inline bool is_single_value() const {
|
|
return min == max;
|
|
}
|
|
|
|
inline void add_point(float x) {
|
|
if (x < min) {
|
|
min = x;
|
|
} else if (x > max) {
|
|
max = x;
|
|
}
|
|
}
|
|
|
|
inline void add_interval(Interval other) {
|
|
add_point(other.min);
|
|
add_point(other.max);
|
|
}
|
|
|
|
inline float length() const {
|
|
return max - min;
|
|
}
|
|
|
|
inline Interval operator+(float x) const {
|
|
return Interval{ min + x, max + x };
|
|
}
|
|
|
|
inline Interval operator+(const Interval &other) const {
|
|
return Interval{ min + other.min, max + other.max };
|
|
}
|
|
|
|
inline void operator+=(const Interval &other) {
|
|
*this = *this + other;
|
|
}
|
|
|
|
inline Interval operator-(float x) const {
|
|
return Interval{ min - x, max - x };
|
|
}
|
|
|
|
inline Interval operator-(const Interval &other) const {
|
|
return Interval{ min - other.max, max - other.min };
|
|
}
|
|
|
|
inline Interval operator-() const {
|
|
return Interval{ -max, -min };
|
|
}
|
|
|
|
inline Interval operator*(float x) const {
|
|
const float a = min * x;
|
|
const float b = max * x;
|
|
if (a < b) {
|
|
return Interval(a, b);
|
|
} else {
|
|
return Interval(b, a);
|
|
}
|
|
}
|
|
|
|
inline void operator*=(float x) {
|
|
*this = *this * x;
|
|
}
|
|
|
|
inline Interval operator*(const Interval &other) const {
|
|
const float a = min * other.min;
|
|
const float b = min * other.max;
|
|
const float c = max * other.min;
|
|
const float d = max * other.max;
|
|
return Interval{ ::min(a, b, c, d), ::max(a, b, c, d) };
|
|
}
|
|
|
|
inline Interval operator/(const Interval &other) const {
|
|
if (other.is_single_value() && other.min == 0.f) {
|
|
return Interval::from_single_value(0.f);
|
|
}
|
|
if (other.contains(0.f)) {
|
|
// TODO May need something more precise
|
|
return Interval::from_infinity();
|
|
}
|
|
const float a = min / other.min;
|
|
const float b = min / other.max;
|
|
const float c = max / other.min;
|
|
const float d = max / other.max;
|
|
return Interval{ ::min(a, b, c, d), ::max(a, b, c, d) };
|
|
}
|
|
|
|
inline Interval operator/(float x) const {
|
|
// TODO Implement proper division by interval
|
|
return *this * (1.f / x);
|
|
}
|
|
|
|
inline void operator/=(float x) {
|
|
*this = *this / x;
|
|
}
|
|
};
|
|
|
|
inline Interval operator*(float b, const Interval &a) {
|
|
return a * b;
|
|
}
|
|
|
|
// Functions declared outside, so using intervals or numbers can be the same code (templatable)
|
|
|
|
inline Interval min_interval(const Interval &a, const Interval &b) {
|
|
return Interval(::min(a.min, b.min), ::min(a.max, b.max));
|
|
}
|
|
|
|
inline Interval max_interval(const Interval &a, const Interval &b) {
|
|
return Interval(::max(a.min, b.min), ::max(a.max, b.max));
|
|
}
|
|
|
|
inline Interval min_interval(const Interval &a, const float b) {
|
|
return Interval(::min(a.min, b), ::min(a.max, b));
|
|
}
|
|
|
|
inline Interval max_interval(const Interval &a, const float b) {
|
|
return Interval(::max(a.min, b), ::max(a.max, b));
|
|
}
|
|
|
|
inline Interval sqrt(const Interval &i) {
|
|
return Interval{
|
|
Math::sqrt(::max(0.f, i.min)),
|
|
Math::sqrt(::max(0.f, i.max))
|
|
};
|
|
}
|
|
|
|
inline Interval squared(const Interval a) {
|
|
return a * a;
|
|
}
|
|
|
|
inline Interval abs(const Interval &i) {
|
|
return Interval{
|
|
i.contains(0) ? 0 : ::min(Math::abs(i.min), Math::abs(i.max)),
|
|
::max(Math::abs(i.min), Math::abs(i.max))
|
|
};
|
|
}
|
|
|
|
inline Interval clamp(const Interval &i, const Interval &p_min, const Interval &p_max) {
|
|
if (p_min.is_single_value() && p_max.is_single_value()) {
|
|
return {
|
|
::clamp(i.min, p_min.min, p_max.min),
|
|
::clamp(i.max, p_min.min, p_max.min)
|
|
};
|
|
}
|
|
if (i.min >= p_min.max && i.max <= p_max.min) {
|
|
return i;
|
|
}
|
|
if (i.min >= p_max.max) {
|
|
return Interval::from_single_value(p_max.max);
|
|
}
|
|
if (i.max <= p_min.min) {
|
|
return Interval::from_single_value(p_min.min);
|
|
}
|
|
return Interval(p_min.min, p_max.max);
|
|
}
|
|
|
|
inline Interval lerp(const Interval &a, const Interval &b, const Interval &t) {
|
|
if (t.is_single_value()) {
|
|
return Interval(Math::lerp(a.min, b.min, t.min), Math::lerp(a.max, b.max, t.min));
|
|
} else {
|
|
return a + t * (b - a);
|
|
}
|
|
}
|
|
|
|
inline Interval sin(const Interval &i) {
|
|
if (i.is_single_value()) {
|
|
return Interval::from_single_value(Math::sin(i.min));
|
|
} else {
|
|
// TODO more precision
|
|
// Simplified
|
|
return Interval(-1.f, 1.f);
|
|
}
|
|
}
|
|
|
|
inline Interval atan(const Interval &t) {
|
|
if (t.is_single_value()) {
|
|
return Interval::from_single_value(Math::atan(t.min));
|
|
}
|
|
// arctan is monotonic
|
|
return Interval{ Math::atan(t.min), Math::atan(t.max) };
|
|
}
|
|
|
|
struct OptionalInterval {
|
|
Interval value;
|
|
bool valid;
|
|
};
|
|
|
|
inline Interval atan2(const Interval &y, const Interval &x, OptionalInterval *secondary_output) {
|
|
if (y.is_single_value() && x.is_single_value()) {
|
|
return Interval::from_single_value(Math::atan2(y.min, x.max));
|
|
}
|
|
|
|
// y
|
|
// 1 | 0
|
|
// |
|
|
// ------o------x
|
|
// |
|
|
// 2 | 3
|
|
|
|
bool in_nx = x.min <= 0.f;
|
|
bool in_px = x.max >= 0.f;
|
|
bool in_ny = y.min <= 0.f;
|
|
bool in_py = y.max >= 0.f;
|
|
|
|
if (secondary_output != nullptr) {
|
|
secondary_output->valid = false;
|
|
}
|
|
|
|
if (in_nx && in_px && in_ny && in_py) {
|
|
// All quadrants
|
|
return Interval{ -Math_PI, Math_PI };
|
|
}
|
|
|
|
bool in_q0 = in_px && in_py;
|
|
bool in_q1 = in_nx && in_py;
|
|
bool in_q2 = in_nx && in_ny;
|
|
bool in_q3 = in_px && in_ny;
|
|
|
|
// Double-quadrants
|
|
|
|
if (in_q0 && in_q1) {
|
|
return Interval(Math::atan2(y.min, x.max), Math::atan2(y.min, x.min));
|
|
}
|
|
if (in_q1 && in_q2) {
|
|
if (secondary_output == nullptr) {
|
|
// When crossing those two quadrants, the angle wraps from PI to -PI.
|
|
// We would be forced to split the interval in two, but we have to return only one.
|
|
// For correctness, we have to return the full range...
|
|
return Interval{ -Math_PI, Math_PI };
|
|
} else {
|
|
// But, sometimes we can afford splitting the interval,
|
|
// especially if our use case joins it back to one.
|
|
// Q1
|
|
secondary_output->value = Interval(Math::atan2(y.max, x.max), Math_PI);
|
|
secondary_output->valid = true;
|
|
// Q2
|
|
return Interval(-Math_PI, Math::atan2(y.min, x.max));
|
|
}
|
|
}
|
|
if (in_q2 && in_q3) {
|
|
return Interval(Math::atan2(y.max, x.min), Math::atan2(y.max, x.max));
|
|
}
|
|
if (in_q3 && in_q0) {
|
|
return Interval(Math::atan2(y.min, x.min), Math::atan2(y.max, x.min));
|
|
}
|
|
|
|
// Single quadrants
|
|
|
|
if (in_q0) {
|
|
return Interval(Math::atan2(y.min, x.max), Math::atan2(y.max, x.min));
|
|
}
|
|
if (in_q1) {
|
|
return Interval(Math::atan2(y.max, x.max), Math::atan2(y.min, x.min));
|
|
}
|
|
if (in_q2) {
|
|
return Interval(Math::atan2(y.max, x.min), Math::atan2(y.min, x.max));
|
|
}
|
|
if (in_q3) {
|
|
return Interval(Math::atan2(y.min, x.min), Math::atan2(y.max, x.max));
|
|
}
|
|
|
|
// Bwarf.
|
|
return Interval{ -Math_PI, Math_PI };
|
|
}
|
|
|
|
inline Interval floor(const Interval &i) {
|
|
// Floor is monotonic so I guess we can just do that?
|
|
return Interval(Math::floor(i.min), Math::floor(i.max));
|
|
}
|
|
|
|
inline Interval round(const Interval &i) {
|
|
// Floor is monotonic so I guess we can just do that?
|
|
return Interval(Math::floor(i.min + 0.5f), Math::floor(i.max + 0.5f));
|
|
}
|
|
|
|
inline Interval stepify(const Interval &p_value, const Interval &p_step) {
|
|
// TODO Division by zero returns 0, which is different from Godot's stepify. May have to change that
|
|
return floor(p_value / p_step + Interval::from_single_value(0.5f)) * p_step;
|
|
}
|
|
|
|
inline Interval wrapf(const Interval &x, const Interval &d) {
|
|
return x - (d * floor(x / d));
|
|
}
|
|
|
|
inline Interval smoothstep(float p_from, float p_to, Interval p_weight) {
|
|
if (Math::is_equal_approx(p_from, p_to)) {
|
|
return Interval::from_single_value(p_from);
|
|
}
|
|
// Smoothstep is monotonic
|
|
float v0 = smoothstep(p_from, p_to, p_weight.min);
|
|
float v1 = smoothstep(p_from, p_to, p_weight.max);
|
|
if (v0 <= v1) {
|
|
return Interval(v0, v1);
|
|
} else {
|
|
return Interval(v1, v0);
|
|
}
|
|
}
|
|
|
|
#endif // INTERVAL_H
|