godot_voxel/terrain/lod_octree.h

221 lines
5.5 KiB
C++

#ifndef LOD_OCTREE_H
#define LOD_OCTREE_H
#include "../math/vector3i.h"
#include "../octree_tables.h"
#include "../util/object_pool.h"
template <class T>
class LodOctree {
public:
struct Node {
Node *children[8];
// Whatever data to associate to the node, when it's a leaf.
// It needs to be booleanizable, where `true` means presence of data, and `false` means no data.
// Typically a pointer, but can be a straight boolean too.
T block;
// Position divided by chunk size at the current LOD,
// so it is sequential within each LOD, which makes it usable for grid storage
Vector3i position;
Node() {
init();
}
inline bool has_children() const {
return children[0] != nullptr;
}
inline void init() {
position = Vector3i();
block = T();
children[0] = nullptr;
// for (int i = 0; i < 8; ++i) {
// children[i] = nullptr;
// }
}
};
struct NoDestroyAction {
inline void operator()(Node *node, int lod) {}
};
template <typename A>
void clear(A &destroy_action) {
join_all_recursively(&_root, _max_depth, destroy_action);
_max_depth = 0;
_base_size = 0;
}
static void compute_lod_count(int base_size, int full_size) {
int po = 0;
while (full_size > base_size) {
full_size = full_size >> 1;
po += 1;
}
return po;
}
template <typename A>
void create_from_lod_count(int base_size, unsigned int lod_count, A &destroy_action) {
ERR_FAIL_COND(lod_count > 32);
clear(destroy_action);
_base_size = base_size;
_max_depth = lod_count - 1;
}
int get_lod_count() const {
return _max_depth + 1;
}
// The higher, the longer LODs will spread and higher the quality.
// The lower, the shorter LODs will spread and lower the quality.
void set_split_scale(float p_split_scale) {
const float minv = 2.0;
const float maxv = 5.0;
// Split scale must be greater than a threshold,
// otherwise lods will decimate too fast and it will look messy
if (p_split_scale < minv) {
p_split_scale = minv;
} else if (p_split_scale > maxv) {
p_split_scale = maxv;
}
_split_scale = p_split_scale;
}
float get_split_scale() const {
return _split_scale;
}
static inline int get_lod_factor(int lod) {
return 1 << lod;
}
template <typename A, typename B>
void update(Vector3 view_pos, A &create_action, B &destroy_action) {
update(&_root, _max_depth, view_pos, create_action, destroy_action);
}
template <typename A>
void foreach_node(A &action) {
action(action, &_root, _max_depth);
}
static inline Vector3i get_child_position(Vector3i parent_position, int i) {
return Vector3i(
parent_position.x * 2 + OctreeTables::g_octant_position[i][0],
parent_position.y * 2 + OctreeTables::g_octant_position[i][1],
parent_position.z * 2 + OctreeTables::g_octant_position[i][2]);
}
private:
template <typename A>
void foreach_node(A action, Node *node, int lod) {
action(node, lod);
if (node->has_children()) {
for (int i = 0; i < 8; ++i) {
foreach_node(action, node->children[i], lod - 1);
}
}
}
template <typename A, typename B>
void update(Node *node, int lod, Vector3 view_pos, A &create_action, B &destroy_action) {
// This function should be called regularly over frames.
int lod_factor = get_lod_factor(lod);
int chunk_size = _base_size * lod_factor;
Vector3 world_center = static_cast<real_t>(chunk_size) * (node->position.to_vec3() + Vector3(0.5, 0.5, 0.5));
float split_distance = chunk_size * _split_scale;
if (!node->has_children()) {
// If it's not the last LOD, if close enough and custom conditions get fulfilled
if (lod > 0 && world_center.distance_to(view_pos) < split_distance && create_action.can_do(node, lod)) {
// Split
for (int i = 0; i < 8; ++i) {
Node *child = _pool.create();
child->position = get_child_position(node->position, i);
child->block = create_action(child, lod - 1);
node->children[i] = child;
// If the node needs to split more, we'll ask more recycling at the next frame...
// That means the initialization of the game should do some warm up and fetch all leaves,
// otherwise it's gonna be rough
}
if (node->block) {
destroy_action(node, lod);
node->block = T();
}
}
} else {
bool no_split_child = true;
for (int i = 0; i < 8; ++i) {
Node *child = node->children[i];
update(child, lod - 1, view_pos, create_action, destroy_action);
no_split_child |= child->has_children();
}
if (no_split_child && world_center.distance_to(view_pos) > split_distance && destroy_action.can_do(node, lod)) {
// Join
if (node->has_children()) {
for (int i = 0; i < 8; ++i) {
Node *child = node->children[i];
destroy_action(child, lod - 1);
child->block = T();
_pool.recycle(child);
}
node->children[0] = nullptr;
CRASH_COND(node->block);
node->block = create_action(node, lod);
}
}
}
}
template <typename A>
void join_all_recursively(Node *node, int lod, A &destroy_action) {
if (node->has_children()) {
Node **children = node->children;
for (int i = 0; i < 8; ++i) {
Node *child = children[i];
join_all_recursively(child, lod - 1, destroy_action);
_pool.recycle(child);
children[0] = nullptr;
}
} else {
if (node->block) {
destroy_action(node, lod);
node->block = T();
}
}
}
Node _root;
int _max_depth = 0;
float _base_size = 16;
float _split_scale = 2.0;
ObjectPool<Node> _pool;
};
// Notes:
// Population of an octree given its depth, thanks to Sage:
// ((1 << 3 * (depth + 1)) - 1 ) / 7
#endif // LOD_OCTREE_H