godot_voxel/terrain/variable_lod/lod_octree.h

481 lines
15 KiB
C++

#ifndef LOD_OCTREE_H
#define LOD_OCTREE_H
#include "../../util/math/box3i.h"
namespace zylann::voxel {
// Octree designed to handle level of detail.
class LodOctree {
public:
static const unsigned int NO_CHILDREN = -1;
static const unsigned int ROOT_INDEX = -1; // Root node isn't stored in pool
struct NodeData {
uint32_t state = 0;
};
struct Node {
// Index to first child node within the node pool.
// The 7 next indexes are the other children.
// If the node isn't subdivided, it is set to NO_CHILDREN.
// Could have used a pointer but an index is enough, occupies half memory and is immune to realloc
unsigned int first_child;
NodeData data;
// Node positions are calculated on the fly to save memory,
// and divided by chunk size at the current LOD,
// so it is sequential within each LOD, which makes it usable for grid storage
Node() {
init();
}
inline bool has_children() const {
return first_child != NO_CHILDREN;
}
inline void init() {
first_child = NO_CHILDREN;
}
};
struct NoDestroyAction {
inline void operator()(Vector3i node_pos, unsigned int lod) {}
};
template <typename DestroyAction_T>
void clear(DestroyAction_T &destroy_action) {
join_all_recursively(&_root, Vector3i(), _max_depth, destroy_action);
_is_root_created = false;
_max_depth = 0;
}
void clear() {
_pool.clear();
_root.init();
_is_root_created = false;
_max_depth = 0;
}
template <typename DestroyAction_T>
void create(unsigned int lod_count, DestroyAction_T &destroy_action) {
clear(destroy_action);
CRASH_COND(lod_count == 0);
_max_depth = lod_count - 1;
}
void create(unsigned int lod_count) {
clear();
CRASH_COND(lod_count == 0);
_max_depth = lod_count - 1;
}
unsigned int get_lod_count() const {
return _max_depth + 1;
}
// Signature examples
struct DefaultUpdateActions {
void create_child(Vector3i node_pos, unsigned int lod, NodeData &data) {} // Occurs on split
void destroy_child(Vector3i node_pos, unsigned int lod) {} // Occurs on merge
void show_parent(Vector3i node_pos, unsigned int lod) {} // Occurs on merge
void hide_parent(Vector3i node_pos, unsigned int lod) {} // Occurs on split
bool can_create_root(int lod) {
return true;
}
bool can_split(Vector3i node_pos, unsigned int lod_index, NodeData &data) {
return true;
}
bool can_join(Vector3i node_pos, unsigned int lod) {
return true;
}
};
// TODO Have a version of `update` that works fully recursively.
// i.e one call should be enough to obtain the target shape
// Fits the octree by splitting nodes if they satisfy the `can_split` predicate,
// and joining nodes if they satisfy the `can_join` predicate.
// This is not fully recursive. It is expected to be called over several frames,
// so the shape is obtained progressively.
template <typename UpdateActions_T>
void update(UpdateActions_T &actions) {
if (_is_root_created || _root.has_children()) {
update(ROOT_INDEX, Vector3i(), _max_depth, actions);
} else {
// TODO I don't like this much
// Treat the root in a slightly different way the first time.
if (actions.can_create_root(_max_depth)) {
actions.create_child(Vector3i(), _max_depth, _root.data);
_is_root_created = true;
update(ROOT_INDEX, Vector3i(), _max_depth, actions);
}
}
}
static inline Vector3i get_child_position(Vector3i parent_position, unsigned int i) {
return Vector3i( //
parent_position.x * 2 + (i & 1), //
parent_position.y * 2 + ((i >> 1) & 1), //
parent_position.z * 2 + ((i >> 2) & 1));
}
const Node *get_root() const {
return &_root;
}
const Node *get_child(const Node *node, unsigned int i) const {
ERR_FAIL_COND_V(node == nullptr, nullptr);
ERR_FAIL_INDEX_V(i, 8, nullptr);
return get_node(node->first_child + i);
}
// Runs a predicate on all leaf nodes intersecting the box, and stops as soon as it is true.
// The box is given in unit coordinates of the octree (1 unit is the size of a leaf node at maximum depth).
// Returns true if the predicate matches any node, false otherwise.
// predicate: `bool is_match(Vector3i node_pos, int lod_index, const NodeData &data)`
template <typename Predicate_T>
bool find_in_box(Box3i box, Predicate_T predicate) const {
Box3i root_box(Vector3i(), Vector3iUtil::create(1 << _max_depth));
box.clip(root_box);
return find_in_box_recursive(box, Vector3i(), ROOT_INDEX, _max_depth, predicate);
}
// Executes a function on all leaf nodes intersecting the box.
// f: `void f(Vector3i node_pos, int lod_index, NodeData &data)`
template <typename F>
void for_leaves_in_box(Box3i box, F f) {
Box3i root_box(Vector3i(), Vector3iUtil::create(1 << _max_depth));
box.clip(root_box);
return for_leaves_in_box_recursive(box, Vector3i(), ROOT_INDEX, _max_depth, f);
}
// Executes a function on all leaf nodes of the octree.
// f: `void f(Vector3i node_pos, int lod_index, const NodeData &data)`
template <typename F>
void for_each_leaf(F f) const {
return for_each_leaf_recursive(Vector3i(), ROOT_INDEX, _max_depth, f);
}
unsigned int get_node_count() const {
return get_node_count_recursive(ROOT_INDEX);
}
struct SubdivideActionsDefault {
bool can_split(Vector3i node_pos, unsigned int lod_index, const NodeData &node_data) {
return true;
}
void create_child(Vector3i node_pos, unsigned int lod_index, NodeData &node_data) {}
};
// Subdivides the octree recursively, solely based on `can_split`.
// Does not unsubdivide existing nodes.
template <typename Actions_T>
void subdivide(Actions_T &actions) {
if (!_is_root_created && actions.can_split(Vector3i(), _max_depth, _root.data)) {
actions.create_child(Vector3i(), _max_depth, _root.data);
_is_root_created = true;
} else {
return;
}
subdivide_recursively(ROOT_INDEX, Vector3i(), _max_depth, actions);
}
// Gets the bounding box of a node within the LOD0 coordinate system
// (i.e a leaf node will always be 1x1x1, a LOD1 node will be 2x2x2 etc)
static inline Box3i get_node_box(Vector3i pos_within_lod, unsigned int lod_index) {
return Box3i(pos_within_lod << lod_index, Vector3iUtil::create(1 << lod_index));
}
// Convenience for use in UpdateActions::can_split.
// Coordinates are in octree space (where 1 unit = size of a leaf node)
static bool is_below_split_distance(Vector3i node_pos, unsigned int lod, Vector3 view_pos, float lod_distance) {
const unsigned int lod_factor = 1 << lod;
const Vector3 world_center = static_cast<real_t>(lod_factor) * (Vector3(node_pos) + Vector3(0.5, 0.5, 0.5));
const float split_distance_sq = math::squared(lod_distance * lod_factor);
return world_center.distance_squared_to(view_pos) < split_distance_sq;
}
// Helper for creating an octree with the right depth
static int compute_lod_count(unsigned int base_size, unsigned int full_size) {
unsigned int po = 0;
while (full_size > base_size) {
full_size = full_size >> 1;
po += 1;
}
return po;
}
static inline unsigned int get_octree_size_po2(unsigned int block_size_po2, unsigned int lod_count) {
return block_size_po2 + lod_count - 1;
}
private:
// This pool treats nodes as packs of 8 so they can be addressed by only knowing the first child
class NodePool {
public:
// Warning: the returned pointer may be invalidated later by `allocate_children`. Use with care.
inline Node *get_node(unsigned int i) {
CRASH_COND(i >= _nodes.size());
CRASH_COND(i == ROOT_INDEX);
return &_nodes[i];
}
inline const Node *get_node(unsigned int i) const {
CRASH_COND(i >= _nodes.size());
CRASH_COND(i == ROOT_INDEX);
return &_nodes[i];
}
unsigned int allocate_children() {
if (_free_indexes.size() == 0) {
unsigned int i0 = _nodes.size();
_nodes.resize(i0 + 8);
return i0;
} else {
unsigned int i0 = _free_indexes[_free_indexes.size() - 1];
_free_indexes.pop_back();
return i0;
}
}
// Warning: this is not recursive. Use it properly.
void recycle_children(unsigned int i0) {
// Debug check, there is no use case in recycling a node which is not a first child
CRASH_COND(i0 % 8 != 0);
for (unsigned int i = 0; i < 8; ++i) {
_nodes[i0 + i].init();
}
_free_indexes.push_back(i0);
}
void clear() {
_nodes.clear();
_free_indexes.clear();
}
private:
// TODO If this grows too much, mayyybe could implement a paged vector to fight fragmentation.
// If we do so, that may also solve pointer invalidation since pages would remain stable
std::vector<Node> _nodes;
std::vector<unsigned int> _free_indexes;
};
inline Node *get_node(unsigned int index) {
if (index == ROOT_INDEX) {
return &_root;
} else {
return _pool.get_node(index);
}
}
inline const Node *get_node(unsigned int index) const {
if (index == ROOT_INDEX) {
return &_root;
} else {
return _pool.get_node(index);
}
}
template <typename UpdateActions_T>
void update(unsigned int node_index, Vector3i node_pos, unsigned int lod, UpdateActions_T &actions) {
// This function should be called regularly over frames.
Node *node = get_node(node_index);
if (!node->has_children()) {
// If it's not the last LOD, if close enough and custom conditions get fulfilled
if (lod > 0 && actions.can_split(node_pos, lod, node->data)) {
// Split
const unsigned int first_child = _pool.allocate_children();
// Get node again because `allocate_children` may invalidate the pointer
node = get_node(node_index);
node->first_child = first_child;
for (unsigned int i = 0; i < 8; ++i) {
const Vector3i child_pos = get_child_position(node_pos, i);
const unsigned int child_lod = lod - 1;
const unsigned int child_index = first_child + i;
Node *child = get_node(child_index);
actions.create_child(child_pos, child_lod, child->data);
update(child_index, child_pos, child_lod, actions);
}
actions.hide_parent(node_pos, lod);
}
} else {
// `node` has children
bool has_split_child = false;
const unsigned int first_child = node->first_child;
for (unsigned int i = 0; i < 8; ++i) {
const unsigned int child_index = first_child + i;
update(child_index, get_child_position(node_pos, i), lod - 1, actions);
has_split_child |= _pool.get_node(child_index)->has_children();
}
if (!has_split_child && actions.can_join(node_pos, lod)) {
// Get node again because `update` may invalidate the pointer
node = get_node(node_index);
// Join
for (unsigned int i = 0; i < 8; ++i) {
actions.destroy_child(get_child_position(node_pos, i), lod - 1);
}
_pool.recycle_children(first_child);
node->first_child = NO_CHILDREN;
actions.show_parent(node_pos, lod);
}
}
}
template <typename DestroyAction_T>
void join_all_recursively(Node *node, Vector3i node_pos, unsigned int lod, DestroyAction_T &destroy_action) {
// We can use pointers here because we won't allocate new nodes,
// and won't shrink the node pool either
if (node->has_children()) {
unsigned int first_child = node->first_child;
for (unsigned int i = 0; i < 8; ++i) {
Node *child = _pool.get_node(first_child + i);
join_all_recursively(child, get_child_position(node_pos, i), lod - 1, destroy_action);
}
_pool.recycle_children(first_child);
node->first_child = NO_CHILDREN;
}
// Destroy self
destroy_action(node_pos, lod);
}
template <typename Predicate_T>
bool find_in_box_recursive(
Box3i box, Vector3i node_pos, unsigned int node_index, unsigned int depth, Predicate_T predicate) const {
const Node *node = get_node(node_index);
const Box3i node_box = get_node_box(node_pos, depth);
if (!node_box.intersects(box)) {
return false;
}
if (node->has_children()) {
const unsigned int first_child_index = node->first_child;
const unsigned int lower_depth = depth - 1;
// TODO Optimization: we could do breadth-first search instead of depth-first,
// because packs of children are contiguous in memory and would help the pre-fetcher
for (unsigned int ri = 0; ri < 8; ++ri) {
const bool found = find_in_box_recursive(
box, get_child_position(node_pos, ri), first_child_index + ri, lower_depth, predicate);
if (found) {
return true;
}
}
} else if (predicate(node_pos, depth, node->data)) {
return true;
}
return false;
}
template <typename F>
void for_leaves_in_box_recursive(Box3i box, Vector3i node_pos, unsigned int node_index, unsigned int depth, F f) {
Node *node = get_node(node_index);
const Box3i node_box = get_node_box(node_pos, depth);
if (!node_box.intersects(box)) {
return;
}
if (node->has_children()) {
const unsigned int first_child_index = node->first_child;
const unsigned int lower_depth = depth - 1;
for (int ri = 0; ri < 8; ++ri) {
for_leaves_in_box_recursive(
box, get_child_position(node_pos, ri), first_child_index + ri, lower_depth, f);
}
} else {
f(node_pos, depth, node->data);
}
}
unsigned int get_node_count_recursive(unsigned int node_index) const {
const Node *node = get_node(node_index);
unsigned int count = 1;
if (node->has_children()) {
for (unsigned int i = 0; i < 8; ++i) {
count += get_node_count_recursive(node->first_child + i);
}
}
return count;
}
template <typename F>
void for_each_leaf_recursive(Vector3i node_pos, unsigned int node_index, unsigned int depth, F f) const {
const Node *node = get_node(node_index);
if (node->has_children()) {
const unsigned int first_child_index = node->first_child;
const unsigned int lower_depth = depth - 1;
for (unsigned int ri = 0; ri < 8; ++ri) {
for_each_leaf_recursive(get_child_position(node_pos, ri), first_child_index + ri, lower_depth, f);
}
} else {
f(node_pos, depth, node->data);
}
}
template <typename Actions_T>
void subdivide_recursively(unsigned int node_index, Vector3i node_pos, unsigned int lod, Actions_T &actions) {
Node *node = get_node(node_index);
if (node->has_children()) {
if (lod == 1) {
// Children can't split
return;
}
// `node` might be invalidated during the loop
const unsigned int first_child_index = node->first_child;
for (unsigned int i = 0; i < 8; ++i) {
subdivide_recursively(first_child_index + i, get_child_position(node_pos, i), lod - 1, actions);
}
} else if (lod > 0 && actions.can_split(node_pos, lod, node->data)) {
// Split
const unsigned int first_child_index = _pool.allocate_children();
// Get node again because `allocate_children` may invalidate the pointer
node = get_node(node_index);
node->first_child = first_child_index;
// `node` might be invalidated during the loop
for (unsigned int i = 0; i < 8; ++i) {
const unsigned int child_index = first_child_index + i;
const Vector3i child_pos = get_child_position(node_pos, i);
Node *child = get_node(child_index);
actions.create_child(child_pos, lod - 1, child->data);
// `child` might be invalidated
subdivide_recursively(child_index, child_pos, lod - 1, actions);
}
// This is where we would call `hide_parent()`, but not needed so far
}
}
Node _root;
bool _is_root_created = false;
unsigned int _max_depth = 0;
NodePool _pool;
};
} // namespace zylann::voxel
// Notes:
// Population of an octree given its depth, thanks to Sage:
// ((1 << 3 * (depth + 1)) - 1 ) / 7
#endif // LOD_OCTREE_H