godot_voxel/meshers/transvoxel/transvoxel.cpp

1433 lines
58 KiB
C++
Raw Normal View History

#include "transvoxel.h"
#include "../../constants/cube_tables.h"
#include "../../util/math/conv.h"
#include "../../util/profiling.h"
#include "transvoxel_tables.cpp"
2022-01-04 00:12:42 +00:00
namespace zylann::voxel::transvoxel {
static const float TRANSITION_CELL_SCALE = 0.25;
2021-09-13 00:19:51 +01:00
// SDF values considered negative have a sign bit of 1 in this algorithm
inline uint8_t sign_f(float v) {
return v < 0.f;
}
Vector3f get_border_offset(const Vector3f pos, const int lod_index, const Vector3i block_size) {
// When transition meshes are inserted between blocks of different LOD, we need to make space for them.
// Secondary vertex positions can be calculated by linearly transforming positions inside boundary cells
// so that the full-size cell is scaled to a smaller size that allows space for between one and three
// transition cells, as necessary, depending on the location with respect to the edges and corners of the
// entire block. This can be accomplished by computing offsets (Δx, Δy, Δz) for the coordinates (x, y, z)
// in any boundary cell.
Vector3f delta;
const float p2k = 1 << lod_index; // 2 ^ lod
const float p2mk = 1.f / p2k; // 2 ^ (-lod)
const float wk = TRANSITION_CELL_SCALE * p2k; // 2 ^ (lod - 2), if scale is 0.25
for (unsigned int i = 0; i < Vector3iUtil::AXIS_COUNT; ++i) {
const float p = pos[i];
const float s = block_size[i];
if (p < p2k) {
// The vertex is inside the minimum cell.
delta[i] = (1.0f - p2mk * p) * wk;
} else if (p > (p2k * (s - 1))) {
// The vertex is inside the maximum cell.
delta[i] = ((p2k * s) - 1.0f - p) * wk;
}
}
return delta;
}
inline Vector3f project_border_offset(Vector3f delta, Vector3f normal) {
// Secondary position can be obtained with the following formula:
//
// | x | | 1 - nx² , -nx * ny , -nx * nz | | Δx |
// | y | + | -nx * ny , 1 - ny² , -ny * nz | * | Δy |
// | z | | -nx * nz , -ny * nz , 1 - nz² | | Δz |
//
return Vector3f((1 - normal.x * normal.x) * delta.x /**/ - normal.y * normal.x * delta.y /* */ -
normal.z * normal.x * delta.z,
/**/ -normal.x * normal.y * delta.x + (1 - normal.y * normal.y) * delta.y /* */ -
normal.z * normal.y * delta.z,
/**/ -normal.x * normal.z * delta.x /**/ - normal.y * normal.z * delta.y /**/ +
(1 - normal.z * normal.z) * delta.z);
}
inline Vector3f get_secondary_position(
const Vector3f primary, const Vector3f normal, const int lod_index, const Vector3i block_size) {
Vector3f delta = get_border_offset(primary, lod_index, block_size);
delta = project_border_offset(delta, normal);
return primary + delta;
}
inline uint8_t get_border_mask(const Vector3i &pos, const Vector3i &block_size) {
uint8_t mask = 0;
// 1: -X
// 2: +X
// 4: -Y
// 8: +Y
// 16: -Z
// 32: +Z
for (unsigned int i = 0; i < Vector3iUtil::AXIS_COUNT; i++) {
// Close to negative face.
if (pos[i] == 0) {
mask |= (1 << (i * 2));
}
// Close to positive face.
if (pos[i] == block_size[i]) {
mask |= (1 << (i * 2 + 1));
}
}
return mask;
}
inline Vector3f normalized_not_null(Vector3f n) {
const float lengthsq = n.length_squared();
if (lengthsq == 0) {
return Vector3f(0, 1, 0);
} else {
const float length = Math::sqrt(lengthsq);
return Vector3f(n.x / length, n.y / length, n.z / length);
}
}
inline Vector3i dir_to_prev_vec(uint8_t dir) {
//return g_corner_dirs[mask] - Vector3f(1,1,1);
return Vector3i(-(dir & 1), -((dir >> 1) & 1), -((dir >> 2) & 1));
}
2022-02-27 04:08:01 +00:00
inline float sdf_as_float(int8_t v) {
return -s8_to_snorm_noclamp(v);
}
2022-02-27 04:08:01 +00:00
inline float sdf_as_float(int16_t v) {
return -s16_to_snorm_noclamp(v);
}
inline float sdf_as_float(float v) {
return -v;
}
inline float sdf_as_float(double v) {
return -v;
}
template <typename Sdf_T>
inline Vector3f get_corner_gradient(unsigned int data_index, Span<const Sdf_T> sdf_data, const Vector3i block_size) {
const unsigned int n010 = 1; // Y+1
const unsigned int n100 = block_size.y; // X+1
const unsigned int n001 = block_size.y * block_size.x; // Z+1
const float nx = sdf_as_float(sdf_data[data_index - n100]);
const float px = sdf_as_float(sdf_data[data_index + n100]);
const float ny = sdf_as_float(sdf_data[data_index - n010]);
const float py = sdf_as_float(sdf_data[data_index + n010]);
const float nz = sdf_as_float(sdf_data[data_index - n001]);
const float pz = sdf_as_float(sdf_data[data_index + n001]);
//get_gradient_normal(nx, px, ny, py, nz, pz, cell_samples[i]);
return Vector3f(nx - px, ny - py, nz - pz);
}
inline uint32_t pack_bytes(const FixedArray<uint8_t, 4> &a) {
return (a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24));
}
void add_texture_data(
std::vector<Vector2f> &uv, unsigned int packed_indices, FixedArray<uint8_t, MAX_TEXTURE_BLENDS> weights) {
struct IntUV {
uint32_t x;
uint32_t y;
};
static_assert(sizeof(IntUV) == sizeof(Vector2f), "Expected same binary size");
uv.push_back(Vector2f());
IntUV &iuv = *(reinterpret_cast<IntUV *>(&uv.back()));
//print_line(String("{0}, {1}, {2}, {3}").format(varray(weights[0], weights[1], weights[2], weights[3])));
iuv.x = packed_indices;
iuv.y = pack_bytes(weights);
}
template <unsigned int NVoxels>
struct CellTextureDatas {
uint32_t packed_indices = 0;
FixedArray<uint8_t, MAX_TEXTURE_BLENDS> indices;
FixedArray<FixedArray<uint8_t, MAX_TEXTURE_BLENDS>, NVoxels> weights;
};
template <unsigned int NVoxels, typename WeightSampler_T>
2022-02-27 04:08:01 +00:00
CellTextureDatas<NVoxels> select_textures_4_per_voxel(const FixedArray<unsigned int, NVoxels> &voxel_indices,
2021-05-31 16:48:49 +01:00
Span<const uint16_t> indices_data, const WeightSampler_T &weights_sampler) {
// TODO Optimization: this function takes almost half of the time when polygonizing non-empty cells.
// I wonder how it can be optimized further?
struct IndexAndWeight {
unsigned int index;
unsigned int weight;
};
FixedArray<FixedArray<uint8_t, MAX_TEXTURES>, NVoxels> cell_texture_weights_temp;
FixedArray<IndexAndWeight, MAX_TEXTURES> indexed_weight_sums;
// Find 4 most-used indices in voxels
for (unsigned int i = 0; i < indexed_weight_sums.size(); ++i) {
indexed_weight_sums[i] = IndexAndWeight{ i, 0 };
}
for (unsigned int ci = 0; ci < voxel_indices.size(); ++ci) {
2022-04-09 15:33:08 +01:00
//ZN_PROFILE_SCOPE();
const unsigned int data_index = voxel_indices[ci];
const FixedArray<uint8_t, 4> indices = decode_indices_from_packed_u16(indices_data[data_index]);
const FixedArray<uint8_t, 4> weights = weights_sampler.get_weights(data_index);
FixedArray<uint8_t, MAX_TEXTURES> &weights_temp = cell_texture_weights_temp[ci];
fill(weights_temp, uint8_t(0));
for (unsigned int j = 0; j < indices.size(); ++j) {
const unsigned int ti = indices[j];
indexed_weight_sums[ti].weight += weights[j];
weights_temp[ti] = weights[j];
}
}
struct IndexAndWeightComparator {
inline bool operator()(const IndexAndWeight &a, const IndexAndWeight &b) const {
return a.weight > b.weight;
}
};
SortArray<IndexAndWeight, IndexAndWeightComparator> sorter;
sorter.sort(indexed_weight_sums.data(), indexed_weight_sums.size());
CellTextureDatas<NVoxels> cell_textures;
// Assign indices
for (unsigned int i = 0; i < cell_textures.indices.size(); ++i) {
cell_textures.indices[i] = indexed_weight_sums[i].index;
}
// Sort indices to avoid cases that are ambiguous for blending, like 1,2,3,4 and 2,1,3,4
// TODO maybe we could require this sorting to be done up front?
// Or maybe could be done after meshing so we do it less times?
math::sort(cell_textures.indices[0], cell_textures.indices[1], cell_textures.indices[2], cell_textures.indices[3]);
cell_textures.packed_indices = pack_bytes(cell_textures.indices);
// Remap weights to follow the indices we selected
for (unsigned int ci = 0; ci < cell_texture_weights_temp.size(); ++ci) {
2022-04-09 15:33:08 +01:00
//ZN_PROFILE_SCOPE();
const FixedArray<uint8_t, MAX_TEXTURES> &src_weights = cell_texture_weights_temp[ci];
FixedArray<uint8_t, 4> &dst_weights = cell_textures.weights[ci];
for (unsigned int i = 0; i < cell_textures.indices.size(); ++i) {
const unsigned int ti = cell_textures.indices[i];
dst_weights[i] = src_weights[ti];
}
}
return cell_textures;
}
struct TextureIndicesData {
2021-05-31 16:48:49 +01:00
Span<const uint16_t> buffer;
FixedArray<uint8_t, 4> default_indices;
uint32_t packed_default_indices;
};
template <unsigned int NVoxels, typename WeightSampler_T>
inline void get_cell_texture_data(CellTextureDatas<NVoxels> &cell_textures,
const TextureIndicesData &texture_indices_data, const FixedArray<unsigned int, NVoxels> &voxel_indices,
const WeightSampler_T &weights_data) {
if (texture_indices_data.buffer.size() == 0) {
// Indices are known for the whole block, just read weights directly
cell_textures.indices = texture_indices_data.default_indices;
cell_textures.packed_indices = texture_indices_data.packed_default_indices;
for (unsigned int ci = 0; ci < voxel_indices.size(); ++ci) {
const unsigned int wi = voxel_indices[ci];
cell_textures.weights[ci] = weights_data.get_weights(wi);
}
} else {
// There can be more than 4 indices or they are not known, so we have to select them
2022-02-27 04:08:01 +00:00
cell_textures = select_textures_4_per_voxel(voxel_indices, texture_indices_data.buffer, weights_data);
}
}
template <typename Sdf_T>
inline Sdf_T get_isolevel() = delete;
template <>
2022-02-27 04:08:01 +00:00
inline int8_t get_isolevel<int8_t>() {
return 0;
}
template <>
2022-02-27 04:08:01 +00:00
inline int16_t get_isolevel<int16_t>() {
return 0;
}
template <>
inline float get_isolevel<float>() {
return 0.f;
}
Vector3f binary_search_interpolate(const IDeepSDFSampler &sampler, float s0, float s1, Vector3i p0, Vector3i p1,
uint32_t initial_lod_index, uint32_t min_lod_index) {
for (uint32_t lod_index = initial_lod_index; lod_index > min_lod_index; --lod_index) {
const Vector3i pm = (p0 + p1) >> 1;
// TODO Optimization: this is quite slow for a small difference in the result.
// Could be improved somewhat, but for now I don't think it's worth it
const float sm = -sampler.get_single(pm, lod_index - 1);
if (sign_f(s0) != sign_f(sm)) {
p1 = pm;
s1 = sm;
} else {
p0 = pm;
s0 = sm;
}
}
const float t = s1 / (s1 - s0);
const float t0 = t;
const float t1 = 1.f - t;
return to_vec3f(p0) * t0 + to_vec3f(p1) * t1;
}
// This function is template so we avoid branches and checks when sampling voxels
template <typename Sdf_T, typename WeightSampler_T>
void build_regular_mesh(Span<const Sdf_T> sdf_data, TextureIndicesData texture_indices_data,
const WeightSampler_T &weights_sampler, const Vector3i block_size_with_padding, uint32_t lod_index,
TexturingMode texturing_mode, Cache &cache, MeshArrays &output, const IDeepSDFSampler *deep_sdf_sampler) {
2022-04-09 15:33:08 +01:00
ZN_PROFILE_SCOPE();
// This function has some comments as quotes from the Transvoxel paper.
const Vector3i block_size = block_size_with_padding - Vector3iUtil::create(MIN_PADDING + MAX_PADDING);
const Vector3i block_size_scaled = block_size << lod_index;
// Prepare vertex reuse cache
cache.reset_reuse_cells(block_size_with_padding);
2021-11-12 21:42:39 +00:00
// We iterate 2x2x2 voxel groups, which the paper calls "cells".
// We also reach one voxel further to compute normals, so we adjust the iterated area
const Vector3i min_pos = Vector3iUtil::create(MIN_PADDING);
const Vector3i max_pos = block_size_with_padding - Vector3iUtil::create(MAX_PADDING);
// How much to advance in the data array to get neighbor voxels
const unsigned int n010 = 1; // Y+1
const unsigned int n100 = block_size_with_padding.y; // X+1
const unsigned int n001 = block_size_with_padding.y * block_size_with_padding.x; // Z+1
const unsigned int n110 = n010 + n100;
const unsigned int n101 = n100 + n001;
const unsigned int n011 = n010 + n001;
const unsigned int n111 = n100 + n010 + n001;
// Get direct representation of the isolevel (not always zero since we are not using signed integers yet)
const Sdf_T isolevel = get_isolevel<Sdf_T>();
// Iterate all cells with padding (expected to be neighbors)
Vector3i pos;
for (pos.z = min_pos.z; pos.z < max_pos.z; ++pos.z) {
for (pos.y = min_pos.y; pos.y < max_pos.y; ++pos.y) {
2021-04-25 20:23:52 +01:00
// TODO Optimization: change iteration to be ZXY? (Data is laid out with Y as deepest coordinate)
unsigned int data_index =
Vector3iUtil::get_zxy_index(Vector3i(min_pos.x, pos.y, pos.z), block_size_with_padding);
for (pos.x = min_pos.x; pos.x < max_pos.x; ++pos.x, data_index += block_size_with_padding.y) {
{
// The chosen comparison here is very important. This relates to case selections where 4 samples
// are equal to the isolevel and 4 others are above or below:
// In one of these two cases, there has to be a surface to extract, otherwise no surface will be
// allowed to appear if it happens to line up with integer coordinates.
// If we used `<` instead of `>`, it would appear to work, but would break those edge cases.
// `>` is chosen because it must match the comparison we do with case selection (in Transvoxel
// it is inverted).
const bool s = sdf_data[data_index] > isolevel;
2022-02-27 04:08:01 +00:00
if ( //
(sdf_data[data_index + n010] > isolevel) == s &&
(sdf_data[data_index + n100] > isolevel) == s &&
(sdf_data[data_index + n110] > isolevel) == s &&
(sdf_data[data_index + n001] > isolevel) == s &&
(sdf_data[data_index + n011] > isolevel) == s &&
(sdf_data[data_index + n101] > isolevel) == s &&
(sdf_data[data_index + n111] > isolevel) == s) {
// Not crossing the isolevel, this cell won't produce any geometry.
// We must figure this out as fast as possible, because it will happen a lot.
continue;
}
}
2022-04-09 15:33:08 +01:00
//ZN_PROFILE_SCOPE();
// 6-------7
// /| /|
// / | / | Corners
// 4-------5 |
// | 2----|--3
// | / | / z y
// |/ |/ |/
// 0-------1 o--x
FixedArray<unsigned int, 8> corner_data_indices;
corner_data_indices[0] = data_index;
corner_data_indices[1] = data_index + n100;
corner_data_indices[2] = data_index + n010;
corner_data_indices[3] = data_index + n110;
corner_data_indices[4] = data_index + n001;
corner_data_indices[5] = data_index + n101;
corner_data_indices[6] = data_index + n011;
corner_data_indices[7] = data_index + n111;
FixedArray<float, 8> cell_samples_sdf;
for (unsigned int i = 0; i < corner_data_indices.size(); ++i) {
cell_samples_sdf[i] = sdf_as_float(sdf_data[corner_data_indices[i]]);
}
// Concatenate the sign of cell values to obtain the case code.
// Index 0 is the less significant bit, and index 7 is the most significant bit.
uint8_t case_code = sign_f(cell_samples_sdf[0]);
case_code |= (sign_f(cell_samples_sdf[1]) << 1);
case_code |= (sign_f(cell_samples_sdf[2]) << 2);
case_code |= (sign_f(cell_samples_sdf[3]) << 3);
case_code |= (sign_f(cell_samples_sdf[4]) << 4);
case_code |= (sign_f(cell_samples_sdf[5]) << 5);
case_code |= (sign_f(cell_samples_sdf[6]) << 6);
case_code |= (sign_f(cell_samples_sdf[7]) << 7);
// TODO Is this really needed now that we check isolevel earlier?
if (case_code == 0 || case_code == 255) {
// If the case_code is 0 or 255, there is no triangulation to do.
continue;
}
ReuseCell &current_reuse_cell = cache.get_reuse_cell(pos);
#if DEBUG_ENABLED
2022-04-13 23:15:32 +01:00
ZN_ASSERT(case_code <= 255);
#endif
FixedArray<Vector3i, 8> padded_corner_positions;
padded_corner_positions[0] = Vector3i(pos.x, pos.y, pos.z);
padded_corner_positions[1] = Vector3i(pos.x + 1, pos.y, pos.z);
padded_corner_positions[2] = Vector3i(pos.x, pos.y + 1, pos.z);
padded_corner_positions[3] = Vector3i(pos.x + 1, pos.y + 1, pos.z);
padded_corner_positions[4] = Vector3i(pos.x, pos.y, pos.z + 1);
padded_corner_positions[5] = Vector3i(pos.x + 1, pos.y, pos.z + 1);
padded_corner_positions[6] = Vector3i(pos.x, pos.y + 1, pos.z + 1);
padded_corner_positions[7] = Vector3i(pos.x + 1, pos.y + 1, pos.z + 1);
CellTextureDatas<8> cell_textures;
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
get_cell_texture_data(cell_textures, texture_indices_data, corner_data_indices, weights_sampler);
current_reuse_cell.packed_texture_indices = cell_textures.packed_indices;
}
FixedArray<Vector3i, 8> corner_positions;
for (unsigned int i = 0; i < padded_corner_positions.size(); ++i) {
const Vector3i p = padded_corner_positions[i];
// Undo padding here. From this point, corner positions are actual positions.
corner_positions[i] = (p - min_pos) << lod_index;
}
// For cells occurring along the minimal boundaries of a block,
// the preceding cells needed for vertex reuse may not exist.
// In these cases, we allow new vertex creation on additional edges of a cell.
// While iterating through the cells in a block, a 3-bit mask is maintained whose bits indicate
// whether corresponding bits in a direction code are valid
const uint8_t direction_validity_mask = (pos.x > min_pos.x ? 1 : 0) |
((pos.y > min_pos.y ? 1 : 0) << 1) | ((pos.z > min_pos.z ? 1 : 0) << 2);
2022-01-04 00:12:42 +00:00
const uint8_t regular_cell_class_index = tables::get_regular_cell_class(case_code);
const tables::RegularCellData &regular_cell_data =
tables::get_regular_cell_data(regular_cell_class_index);
const uint8_t triangle_count = regular_cell_data.geometryCounts & 0x0f;
const uint8_t vertex_count = (regular_cell_data.geometryCounts & 0xf0) >> 4;
FixedArray<int, 12> cell_vertex_indices;
fill(cell_vertex_indices, -1);
const uint8_t cell_border_mask = get_border_mask(pos - min_pos, block_size - Vector3i(1, 1, 1));
// For each vertex in the case
for (unsigned int vertex_index = 0; vertex_index < vertex_count; ++vertex_index) {
// The case index maps to a list of 16-bit codes providing information about the edges on which the
// vertices lie. The low byte of each 16-bit code contains the corner indexes of the edges
// endpoints in one nibble each, and the high byte contains the mapping code shown in Figure 3.8(b)
2022-01-04 00:12:42 +00:00
const unsigned short rvd = tables::get_regular_vertex_data(case_code, vertex_index);
const uint8_t edge_code_low = rvd & 0xff;
const uint8_t edge_code_high = (rvd >> 8) & 0xff;
// Get corner indexes in the low nibble (always ordered so the higher comes last)
const uint8_t v0 = (edge_code_low >> 4) & 0xf;
const uint8_t v1 = edge_code_low & 0xf;
#ifdef DEBUG_ENABLED
2022-04-13 23:15:32 +01:00
ZN_ASSERT_RETURN(v1 > v0);
#endif
// Get voxel values at the corners
const float sample0 = cell_samples_sdf[v0]; // called d0 in the paper
const float sample1 = cell_samples_sdf[v1]; // called d1 in the paper
#ifdef DEBUG_ENABLED
// TODO Zero-division is not mentionned in the paper?? (never happens tho)
2022-04-13 23:15:32 +01:00
ZN_ASSERT_RETURN(sample1 != sample0);
ZN_ASSERT_RETURN(sample1 != 0 || sample0 != 0);
#endif
// Get interpolation position
// We use an 8-bit fraction, allowing the new vertex to be located at one of 257 possible
// positions along the edge when both endpoints are included.
//const int t = (sample1 << 8) / (sample1 - sample0);
const float t = sample1 / (sample1 - sample0);
const Vector3i p0 = corner_positions[v0];
const Vector3i p1 = corner_positions[v1];
if (t > 0.f && t < 1.f) {
// Vertex is between p0 and p1 (inside the edge)
// Each edge of a cell is assigned an 8-bit code, as shown in Figure 3.8(b),
// that provides a mapping to a preceding cell and the coincident edge on that preceding cell
// for which new vertex creation was allowed.
// The high nibble of this code indicates which direction to go in order to reach the correct
// preceding cell. The bit values 1, 2, and 4 in this nibble indicate that we must subtract one
// from the x, y, and/or z coordinate, respectively.
const uint8_t reuse_dir = (edge_code_high >> 4) & 0xf;
const uint8_t reuse_vertex_index = edge_code_high & 0xf;
// TODO Some re-use opportunities are missed on negative sides of the block,
// but I don't really know how to fix it...
// You can check by "shaking" every vertex randomly in a shader based on its index,
// you will see vertices touching the -X, -Y or -Z sides of the block aren't connected
const bool present = (reuse_dir & direction_validity_mask) == reuse_dir;
if (present) {
const Vector3i cache_pos = pos + dir_to_prev_vec(reuse_dir);
const ReuseCell &prev_cell = cache.get_reuse_cell(cache_pos);
if (prev_cell.packed_texture_indices == cell_textures.packed_indices) {
// Will reuse a previous vertice
cell_vertex_indices[vertex_index] = prev_cell.vertices[reuse_vertex_index];
}
}
if (!present || cell_vertex_indices[vertex_index] == -1) {
// Create new vertex
const float t0 = t; //static_cast<float>(t) / 256.f;
const float t1 = 1.f - t; //static_cast<float>(0x100 - t) / 256.f;
//const int ti0 = t;
//const int ti1 = 0x100 - t;
//const Vector3i primary = p0 * ti0 + p1 * ti1;
Vector3f primaryf;
if (deep_sdf_sampler != nullptr) {
primaryf = binary_search_interpolate(
*deep_sdf_sampler, sample0, sample1, p0, p1, lod_index, 0);
} else {
primaryf = to_vec3f(p0) * t0 + to_vec3f(p1) * t1;
}
// TODO Binary search gives better positional results, but does not improve normals.
// I'm not sure how to overcome this because if we sample low-detail normals, we get a
// "blocky" result due to SDF clipping. If we sample high-detail gradients, we get details,
// but if details are bumpy, we also get noisy results.
const Vector3f cg0 = get_corner_gradient<Sdf_T>(
corner_data_indices[v0], sdf_data, block_size_with_padding);
const Vector3f cg1 = get_corner_gradient<Sdf_T>(
corner_data_indices[v1], sdf_data, block_size_with_padding);
const Vector3f normal = normalized_not_null(cg0 * t0 + cg1 * t1);
Vector3f secondary;
uint16_t border_mask = cell_border_mask;
if (cell_border_mask > 0) {
secondary = get_secondary_position(primaryf, normal, 0, block_size_scaled);
border_mask |= (get_border_mask(p0, block_size_scaled) &
get_border_mask(p1, block_size_scaled))
<< 6;
}
cell_vertex_indices[vertex_index] =
output.add_vertex(primaryf, normal, border_mask, secondary);
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
const FixedArray<uint8_t, MAX_TEXTURE_BLENDS> weights0 = cell_textures.weights[v0];
const FixedArray<uint8_t, MAX_TEXTURE_BLENDS> weights1 = cell_textures.weights[v1];
FixedArray<uint8_t, MAX_TEXTURE_BLENDS> weights;
for (unsigned int i = 0; i < MAX_TEXTURE_BLENDS; ++i) {
weights[i] = static_cast<uint8_t>(
2022-01-03 23:14:18 +00:00
math::clamp(Math::lerp(weights0[i], weights1[i], t1), 0.f, 255.f));
}
add_texture_data(output.texturing_data, cell_textures.packed_indices, weights);
}
if (reuse_dir & 8) {
// Store the generated vertex so that other cells can reuse it.
current_reuse_cell.vertices[reuse_vertex_index] = cell_vertex_indices[vertex_index];
}
}
} else if (t == 0 && v1 == 7) {
// t == 0: the vertex is on p1
// v1 == 7: p1 on the max corner of the cell
// This cell owns the vertex, so it should be created.
const Vector3i primary = p1;
const Vector3f primaryf = to_vec3f(primary);
const Vector3f cg1 =
get_corner_gradient<Sdf_T>(corner_data_indices[v1], sdf_data, block_size_with_padding);
const Vector3f normal = normalized_not_null(cg1);
Vector3f secondary;
uint16_t border_mask = cell_border_mask;
if (cell_border_mask > 0) {
secondary = get_secondary_position(primaryf, normal, 0, block_size_scaled);
border_mask |= get_border_mask(p1, block_size_scaled) << 6;
}
cell_vertex_indices[vertex_index] = output.add_vertex(primaryf, normal, border_mask, secondary);
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
const FixedArray<uint8_t, MAX_TEXTURE_BLENDS> weights1 = cell_textures.weights[v1];
add_texture_data(output.texturing_data, cell_textures.packed_indices, weights1);
}
current_reuse_cell.vertices[0] = cell_vertex_indices[vertex_index];
} else {
// The vertex is either on p0 or p1
// Always try to reuse previous vertices in these cases
// A 3-bit direction code leading to the proper cell can easily be obtained by
// inverting the 3-bit corner index (bitwise, by exclusive ORing with the number 7).
// The corner index depends on the value of t, t = 0 means that we're at the higher
// numbered endpoint.
const uint8_t reuse_dir = (t == 0 ? v1 ^ 7 : v0 ^ 7);
const bool present = (reuse_dir & direction_validity_mask) == reuse_dir;
// Note: the only difference with similar code above is that we take vertice 0 in the `else`
if (present) {
const Vector3i cache_pos = pos + dir_to_prev_vec(reuse_dir);
const ReuseCell &prev_cell = cache.get_reuse_cell(cache_pos);
cell_vertex_indices[vertex_index] = prev_cell.vertices[0];
}
if (!present || cell_vertex_indices[vertex_index] < 0) {
// Create new vertex
// TODO Earlier we associated t==0 to p0, why are we doing p1 here?
const unsigned int vi = t == 0 ? v1 : v0;
const Vector3i primary = t == 0 ? p1 : p0;
const Vector3f primaryf = to_vec3f(primary);
const Vector3f cg = get_corner_gradient<Sdf_T>(
corner_data_indices[vi], sdf_data, block_size_with_padding);
const Vector3f normal = normalized_not_null(cg);
// TODO This bit of code is repeated several times, factor it?
Vector3f secondary;
uint16_t border_mask = cell_border_mask;
if (cell_border_mask > 0) {
secondary = get_secondary_position(primaryf, normal, 0, block_size_scaled);
border_mask |= get_border_mask(primary, block_size_scaled) << 6;
}
cell_vertex_indices[vertex_index] =
output.add_vertex(primaryf, normal, border_mask, secondary);
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
const FixedArray<uint8_t, MAX_TEXTURE_BLENDS> weights = cell_textures.weights[vi];
add_texture_data(output.texturing_data, cell_textures.packed_indices, weights);
}
}
}
} // for each cell vertex
for (int t = 0; t < triangle_count; ++t) {
const int t0 = t * 3;
const int i0 = cell_vertex_indices[regular_cell_data.get_vertex_index(t0)];
const int i1 = cell_vertex_indices[regular_cell_data.get_vertex_index(t0 + 1)];
const int i2 = cell_vertex_indices[regular_cell_data.get_vertex_index(t0 + 2)];
output.indices.push_back(i0);
output.indices.push_back(i1);
output.indices.push_back(i2);
}
} // x
} // y
} // z
}
// y y
// | | z
// | |/ OpenGL axis convention
// o---x x---o
// /
// z
// Convert from face-space to block-space coordinates, considering which face we are working on.
inline Vector3i face_to_block(int x, int y, int z, int dir, const Vector3i &bs) {
// There are several possible solutions to this, because we can rotate the axes.
// We'll take configurations where XY map different axes at the same relative orientations,
// so only Z is flipped in half cases.
switch (dir) {
case Cube::SIDE_NEGATIVE_X:
return Vector3i(z, x, y);
case Cube::SIDE_POSITIVE_X:
return Vector3i(bs.x - 1 - z, y, x);
case Cube::SIDE_NEGATIVE_Y:
return Vector3i(y, z, x);
case Cube::SIDE_POSITIVE_Y:
return Vector3i(x, bs.y - 1 - z, y);
case Cube::SIDE_NEGATIVE_Z:
return Vector3i(x, y, z);
case Cube::SIDE_POSITIVE_Z:
return Vector3i(y, x, bs.z - 1 - z);
default:
CRASH_NOW();
return Vector3i();
}
}
// I took the choice of supporting non-cubic area, so...
inline void get_face_axes(int &ax, int &ay, int dir) {
switch (dir) {
case Cube::SIDE_NEGATIVE_X:
ax = Vector3i::AXIS_Y;
ay = Vector3i::AXIS_Z;
break;
case Cube::SIDE_POSITIVE_X:
ax = Vector3i::AXIS_Z;
ay = Vector3i::AXIS_Y;
break;
case Cube::SIDE_NEGATIVE_Y:
ax = Vector3i::AXIS_Z;
ay = Vector3i::AXIS_X;
break;
case Cube::SIDE_POSITIVE_Y:
ax = Vector3i::AXIS_X;
ay = Vector3i::AXIS_Z;
break;
case Cube::SIDE_NEGATIVE_Z:
ax = Vector3i::AXIS_X;
ay = Vector3i::AXIS_Y;
break;
case Cube::SIDE_POSITIVE_Z:
ax = Vector3i::AXIS_Y;
ay = Vector3i::AXIS_X;
break;
default:
2022-04-13 23:15:32 +01:00
ZN_CRASH();
}
}
template <typename Sdf_T, typename WeightSampler_T>
void build_transition_mesh(Span<const Sdf_T> sdf_data, TextureIndicesData texture_indices_data,
const WeightSampler_T &weights_sampler, const Vector3i block_size_with_padding, int direction, int lod_index,
TexturingMode texturing_mode, Cache &cache, MeshArrays &output) {
// From this point, we expect the buffer to contain allocated data.
// This function has some comments as quotes from the Transvoxel paper.
const Vector3i block_size_without_padding =
block_size_with_padding - Vector3iUtil::create(MIN_PADDING + MAX_PADDING);
const Vector3i block_size_scaled = block_size_without_padding << lod_index;
2022-04-13 23:15:32 +01:00
ZN_ASSERT_RETURN(block_size_with_padding.x >= 3);
ZN_ASSERT_RETURN(block_size_with_padding.y >= 3);
ZN_ASSERT_RETURN(block_size_with_padding.z >= 3);
cache.reset_reuse_cells_2d(block_size_with_padding);
// This part works in "face space", which is 2D along local X and Y axes.
// In this space, -Z points towards the half resolution cells, while +Z points towards full-resolution cells.
// Conversion is used to map this space to block space using a direction enum.
// Note: I made a few changes compared to the paper.
// Instead of making transition meshes go from low-res blocks to high-res blocks,
// I do the opposite, going from high-res to low-res. It's easier because half-res voxels are available for free,
// if we compute the transition meshes right after the regular mesh, with the same voxel data.
// TODO One issue with this change however, is a "bump" of mesh density which can be noticeable.
// This represents the actual box of voxels we are working on.
// It also represents positions of the minimum and maximum vertices that can be generated.
// Padding is present to allow reaching 1 voxel further for calculating normals
const Vector3i min_pos = Vector3iUtil::create(MIN_PADDING);
const Vector3i max_pos = block_size_with_padding - Vector3iUtil::create(MAX_PADDING);
int axis_x, axis_y;
get_face_axes(axis_x, axis_y, direction);
const int min_fpos_x = min_pos[axis_x];
const int min_fpos_y = min_pos[axis_y];
const int max_fpos_x = max_pos[axis_x] - 1; // Another -1 here, because the 2D kernel is 3x3
const int max_fpos_y = max_pos[axis_y] - 1;
// How much to advance in the data array to get neighbor voxels
const unsigned int n010 = 1; // Y+1
const unsigned int n100 = block_size_with_padding.y; // X+1
const unsigned int n001 = block_size_with_padding.y * block_size_with_padding.x; // Z+1
// const unsigned int n110 = n010 + n100;
// const unsigned int n101 = n100 + n001;
// const unsigned int n011 = n010 + n001;
// const unsigned int n111 = n100 + n010 + n001;
// Using temporay locals otherwise clang-format makes it hard to read
const Vector3i ftb_000 = face_to_block(0, 0, 0, direction, block_size_with_padding);
const Vector3i ftb_x00 = face_to_block(1, 0, 0, direction, block_size_with_padding);
const Vector3i ftb_0y0 = face_to_block(0, 1, 0, direction, block_size_with_padding);
// How much to advance in the data array to get neighbor voxels, using face coordinates
const int fn00 = Vector3iUtil::get_zxy_index(ftb_000, block_size_with_padding);
const int fn10 = Vector3iUtil::get_zxy_index(ftb_x00, block_size_with_padding) - fn00;
const int fn01 = Vector3iUtil::get_zxy_index(ftb_0y0, block_size_with_padding) - fn00;
const int fn11 = fn10 + fn01;
const int fn21 = 2 * fn10 + fn01;
const int fn22 = 2 * fn10 + 2 * fn01;
const int fn12 = fn10 + 2 * fn01;
const int fn20 = 2 * fn10;
const int fn02 = 2 * fn01;
FixedArray<Vector3i, 13> cell_positions;
const int fz = MIN_PADDING;
const Sdf_T isolevel = get_isolevel<Sdf_T>();
// Iterating in face space
for (int fy = min_fpos_y; fy < max_fpos_y; fy += 2) {
for (int fx = min_fpos_x; fx < max_fpos_x; fx += 2) {
// Cell positions in block space
// Warning: temporarily includes padding. It is undone later.
cell_positions[0] = face_to_block(fx, fy, fz, direction, block_size_with_padding);
const int data_index = Vector3iUtil::get_zxy_index(cell_positions[0], block_size_with_padding);
{
const bool s = sdf_data[data_index] < isolevel;
// `//` prevents clang-format from messing up
if ( //
(sdf_data[data_index + fn10] < isolevel) == s && //
(sdf_data[data_index + fn20] < isolevel) == s && //
(sdf_data[data_index + fn01] < isolevel) == s && //
(sdf_data[data_index + fn11] < isolevel) == s && //
(sdf_data[data_index + fn21] < isolevel) == s && //
(sdf_data[data_index + fn02] < isolevel) == s && //
(sdf_data[data_index + fn12] < isolevel) == s && //
(sdf_data[data_index + fn22] < isolevel) == s) {
// Not crossing the isolevel, this cell won't produce any geometry.
// We must figure this out as fast as possible, because it will happen a lot.
continue;
}
}
FixedArray<unsigned int, 9> cell_data_indices;
cell_data_indices[0] = data_index;
cell_data_indices[1] = data_index + fn10;
cell_data_indices[2] = data_index + fn20;
cell_data_indices[3] = data_index + fn01;
cell_data_indices[4] = data_index + fn11;
cell_data_indices[5] = data_index + fn21;
cell_data_indices[6] = data_index + fn02;
cell_data_indices[7] = data_index + fn12;
cell_data_indices[8] = data_index + fn22;
// 6---7---8
// | | |
// 3---4---5
// | | |
// 0---1---2
// Full-resolution samples 0..8
FixedArray<float, 13> cell_samples;
for (unsigned int i = 0; i < 9; ++i) {
cell_samples[i] = sdf_as_float(sdf_data[cell_data_indices[i]]);
}
// B-------C
// | |
// | |
// | |
// 9-------A
// Half-resolution samples 9..C: they are the same
cell_samples[0x9] = cell_samples[0];
cell_samples[0xA] = cell_samples[2];
cell_samples[0xB] = cell_samples[6];
cell_samples[0xC] = cell_samples[8];
uint16_t case_code = sign_f(cell_samples[0]);
case_code |= (sign_f(cell_samples[1]) << 1);
case_code |= (sign_f(cell_samples[2]) << 2);
case_code |= (sign_f(cell_samples[5]) << 3);
case_code |= (sign_f(cell_samples[8]) << 4);
case_code |= (sign_f(cell_samples[7]) << 5);
case_code |= (sign_f(cell_samples[6]) << 6);
case_code |= (sign_f(cell_samples[3]) << 7);
case_code |= (sign_f(cell_samples[4]) << 8);
if (case_code == 0 || case_code == 511) {
// The cell contains no triangles.
continue;
}
CellTextureDatas<13> cell_textures;
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
CellTextureDatas<9> cell_textures_partial;
get_cell_texture_data(cell_textures_partial, texture_indices_data, cell_data_indices, weights_sampler);
cell_textures.indices = cell_textures_partial.indices;
cell_textures.packed_indices = cell_textures_partial.packed_indices;
for (unsigned int i = 0; i < cell_textures_partial.weights.size(); ++i) {
cell_textures.weights[i] = cell_textures_partial.weights[i];
}
cell_textures.weights[0x9] = cell_textures_partial.weights[0];
cell_textures.weights[0xA] = cell_textures_partial.weights[2];
cell_textures.weights[0xB] = cell_textures_partial.weights[6];
cell_textures.weights[0xC] = cell_textures_partial.weights[8];
2021-05-31 02:11:09 +01:00
ReuseTransitionCell &current_reuse_cell = cache.get_reuse_cell_2d(fx, fy);
current_reuse_cell.packed_texture_indices = cell_textures.packed_indices;
}
2022-04-13 23:15:32 +01:00
ZN_ASSERT(case_code <= 511);
// TODO We may not need all of them!
FixedArray<Vector3f, 13> cell_gradients;
for (unsigned int i = 0; i < 9; ++i) {
const unsigned int di = cell_data_indices[i];
const float nx = sdf_as_float(sdf_data[di - n100]);
const float ny = sdf_as_float(sdf_data[di - n010]);
const float nz = sdf_as_float(sdf_data[di - n001]);
const float px = sdf_as_float(sdf_data[di + n100]);
const float py = sdf_as_float(sdf_data[di + n010]);
const float pz = sdf_as_float(sdf_data[di + n001]);
cell_gradients[i] = Vector3f(nx - px, ny - py, nz - pz);
}
cell_gradients[0x9] = cell_gradients[0];
cell_gradients[0xA] = cell_gradients[2];
cell_gradients[0xB] = cell_gradients[6];
cell_gradients[0xC] = cell_gradients[8];
2021-04-25 20:23:52 +01:00
// TODO Optimization: get rid of conditionals involved in face_to_block
cell_positions[1] = face_to_block(fx + 1, fy + 0, fz, direction, block_size_with_padding);
cell_positions[2] = face_to_block(fx + 2, fy + 0, fz, direction, block_size_with_padding);
cell_positions[3] = face_to_block(fx + 0, fy + 1, fz, direction, block_size_with_padding);
cell_positions[4] = face_to_block(fx + 1, fy + 1, fz, direction, block_size_with_padding);
cell_positions[5] = face_to_block(fx + 2, fy + 1, fz, direction, block_size_with_padding);
cell_positions[6] = face_to_block(fx + 0, fy + 2, fz, direction, block_size_with_padding);
cell_positions[7] = face_to_block(fx + 1, fy + 2, fz, direction, block_size_with_padding);
cell_positions[8] = face_to_block(fx + 2, fy + 2, fz, direction, block_size_with_padding);
for (unsigned int i = 0; i < 9; ++i) {
cell_positions[i] = (cell_positions[i] - min_pos) << lod_index;
}
cell_positions[0x9] = cell_positions[0];
cell_positions[0xA] = cell_positions[2];
cell_positions[0xB] = cell_positions[6];
cell_positions[0xC] = cell_positions[8];
2022-01-04 00:12:42 +00:00
const uint8_t cell_class = tables::get_transition_cell_class(case_code);
CRASH_COND((cell_class & 0x7f) > 55);
2022-01-04 00:12:42 +00:00
const tables::TransitionCellData cell_data = tables::get_transition_cell_data(cell_class & 0x7f);
const bool flip_triangles = ((cell_class & 128) != 0);
const unsigned int vertex_count = cell_data.GetVertexCount();
FixedArray<int, 12> cell_vertex_indices;
fill(cell_vertex_indices, -1);
CRASH_COND(vertex_count > cell_vertex_indices.size());
const uint8_t direction_validity_mask = (fx > min_fpos_x ? 1 : 0) | ((fy > min_fpos_y ? 1 : 0) << 1);
const uint8_t cell_border_mask = get_border_mask(cell_positions[0], block_size_scaled);
for (unsigned int vertex_index = 0; vertex_index < vertex_count; ++vertex_index) {
2022-01-04 00:12:42 +00:00
const uint16_t edge_code = tables::get_transition_vertex_data(case_code, vertex_index);
const uint8_t index_vertex_a = (edge_code >> 4) & 0xf;
const uint8_t index_vertex_b = (edge_code & 0xf);
const float sample_a = cell_samples[index_vertex_a]; // d0 and d1 in the paper
const float sample_b = cell_samples[index_vertex_b];
// TODO Zero-division is not mentionned in the paper??
2022-04-13 23:15:32 +01:00
ZN_ASSERT_RETURN(sample_a != sample_b);
ZN_ASSERT_RETURN(sample_a != 0 || sample_b != 0);
// Get interpolation position
// We use an 8-bit fraction, allowing the new vertex to be located at one of 257 possible
// positions along the edge when both endpoints are included.
//const int t = (sample_b << 8) / (sample_b - sample_a);
const float t = sample_b / (sample_b - sample_a);
const float t0 = t; //static_cast<float>(t) / 256.f;
const float t1 = 1.f - t; //static_cast<float>(0x100 - t) / 256.f;
// const int ti0 = t;
// const int ti1 = 0x100 - t;
if (t > 0.f && t < 1.f) {
// Vertex lies in the interior of the edge.
// (i.e t is either 0 or 257, meaning it's either directly on vertex a or vertex b)
const uint8_t vertex_index_to_reuse_or_create = (edge_code >> 8) & 0xf;
// The bit values 1 and 2 in this nibble indicate that we must subtract one from the x or y
// coordinate, respectively, and these two bits are never simultaneously set.
// The bit value 4 indicates that a new vertex is to be created on an interior edge
// where it cannot be reused, and the bit value 8 indicates that a new vertex is to be created on a
// maximal edge where it can be reused.
//
// Bit 0 (0x1): need to subtract one to X
// Bit 1 (0x2): need to subtract one to Y
// Bit 2 (0x4): vertex is on an interior edge, won't be reused
// Bit 3 (0x8): vertex is on a maximal edge, it can be reused
const uint8_t reuse_direction = (edge_code >> 12);
const bool present = (reuse_direction & direction_validity_mask) == reuse_direction;
if (present) {
// The previous cell is available. Retrieve the cached cell
// from which to retrieve the reused vertex index from.
const ReuseTransitionCell &prev =
cache.get_reuse_cell_2d(fx - (reuse_direction & 1), fy - ((reuse_direction >> 1) & 1));
2021-05-31 02:11:09 +01:00
if (prev.packed_texture_indices == cell_textures.packed_indices) {
// Reuse the vertex index from the previous cell.
cell_vertex_indices[vertex_index] = prev.vertices[vertex_index_to_reuse_or_create];
}
}
if (!present || cell_vertex_indices[vertex_index] == -1) {
// Going to create a new vertex
const Vector3i p0 = cell_positions[index_vertex_a];
const Vector3i p1 = cell_positions[index_vertex_b];
const Vector3f n0 = cell_gradients[index_vertex_a];
const Vector3f n1 = cell_gradients[index_vertex_b];
//Vector3i primary = p0 * ti0 + p1 * ti1;
const Vector3f primaryf = to_vec3f(p0) * t0 + to_vec3f(p1) * t1;
const Vector3f normal = normalized_not_null(n0 * t0 + n1 * t1);
const bool fullres_side = (index_vertex_a < 9 || index_vertex_b < 9);
uint16_t border_mask = cell_border_mask;
Vector3f secondary;
if (fullres_side) {
secondary = get_secondary_position(primaryf, normal, 0, block_size_scaled);
border_mask |=
(get_border_mask(p0, block_size_scaled) & get_border_mask(p1, block_size_scaled))
<< 6;
} else {
// If the vertex is on the half-res side (in our implementation,
// it's the side of the block), then we make the mask 0 so that the vertex is never moved.
// We only move the full-res side to connect with the regular mesh,
// which will also be moved by the same amount to fit the transition mesh.
border_mask = 0;
}
cell_vertex_indices[vertex_index] = output.add_vertex(primaryf, normal, border_mask, secondary);
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
const FixedArray<uint8_t, MAX_TEXTURE_BLENDS> weights0 =
cell_textures.weights[index_vertex_a];
const FixedArray<uint8_t, MAX_TEXTURE_BLENDS> weights1 =
cell_textures.weights[index_vertex_b];
FixedArray<uint8_t, MAX_TEXTURE_BLENDS> weights;
for (unsigned int i = 0; i < cell_textures.indices.size(); ++i) {
weights[i] = static_cast<uint8_t>(
2022-01-03 23:14:18 +00:00
math::clamp(Math::lerp(weights0[i], weights1[i], t1), 0.f, 255.f));
}
add_texture_data(output.texturing_data, cell_textures.packed_indices, weights);
}
if (reuse_direction & 0x8) {
// The vertex can be re-used later
ReuseTransitionCell &r = cache.get_reuse_cell_2d(fx, fy);
r.vertices[vertex_index_to_reuse_or_create] = cell_vertex_indices[vertex_index];
}
}
} else {
// The vertex is exactly on one of the edge endpoints.
// Try to reuse corner vertex from a preceding cell.
// Use the reuse information in transitionCornerData.
const uint8_t cell_index = (t == 0 ? index_vertex_b : index_vertex_a);
CRASH_COND(cell_index >= 13);
2022-01-04 00:12:42 +00:00
const uint8_t corner_data = tables::get_transition_corner_data(cell_index);
const uint8_t vertex_index_to_reuse_or_create = (corner_data & 0xf);
const uint8_t reuse_direction = ((corner_data >> 4) & 0xf);
const bool present = (reuse_direction & direction_validity_mask) == reuse_direction;
if (present) {
// The previous cell is available. Retrieve the cached cell
// from which to retrieve the reused vertex index from.
const ReuseTransitionCell &prev =
cache.get_reuse_cell_2d(fx - (reuse_direction & 1), fy - ((reuse_direction >> 1) & 1));
// Reuse the vertex index from the previous cell.
cell_vertex_indices[vertex_index] = prev.vertices[vertex_index_to_reuse_or_create];
}
if (!present || cell_vertex_indices[vertex_index] == -1) {
// Going to create a new vertex
const Vector3i primary = cell_positions[cell_index];
const Vector3f primaryf = to_vec3f(primary);
const Vector3f normal = normalized_not_null(cell_gradients[cell_index]);
const bool fullres_side = (cell_index < 9);
uint16_t border_mask = cell_border_mask;
Vector3f secondary;
if (fullres_side) {
secondary = get_secondary_position(primaryf, normal, 0, block_size_scaled);
border_mask |= get_border_mask(primary, block_size_scaled) << 6;
} else {
border_mask = 0;
}
cell_vertex_indices[vertex_index] = output.add_vertex(primaryf, normal, border_mask, secondary);
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
const FixedArray<uint8_t, MAX_TEXTURE_BLENDS> weights = cell_textures.weights[cell_index];
add_texture_data(output.texturing_data, cell_textures.packed_indices, weights);
}
// We are on a corner so the vertex will be re-usable later
ReuseTransitionCell &r = cache.get_reuse_cell_2d(fx, fy);
r.vertices[vertex_index_to_reuse_or_create] = cell_vertex_indices[vertex_index];
}
}
} // for vertex
const unsigned int triangle_count = cell_data.GetTriangleCount();
for (unsigned int ti = 0; ti < triangle_count; ++ti) {
if (flip_triangles) {
output.indices.push_back(cell_vertex_indices[cell_data.get_vertex_index(ti * 3)]);
output.indices.push_back(cell_vertex_indices[cell_data.get_vertex_index(ti * 3 + 1)]);
output.indices.push_back(cell_vertex_indices[cell_data.get_vertex_index(ti * 3 + 2)]);
} else {
output.indices.push_back(cell_vertex_indices[cell_data.get_vertex_index(ti * 3 + 2)]);
output.indices.push_back(cell_vertex_indices[cell_data.get_vertex_index(ti * 3 + 1)]);
output.indices.push_back(cell_vertex_indices[cell_data.get_vertex_index(ti * 3)]);
}
}
} // for x
} // for y
}
template <typename T>
2021-05-31 16:48:49 +01:00
Span<const T> get_or_decompress_channel(
const VoxelBufferInternal &voxels, std::vector<T> &backing_buffer, unsigned int channel) {
2021-05-31 16:48:49 +01:00
//
2022-04-13 23:15:32 +01:00
ZN_ASSERT_RETURN_V(
voxels.get_channel_depth(channel) == VoxelBufferInternal::get_depth_from_size(sizeof(T)), Span<const T>());
if (voxels.get_channel_compression(channel) == VoxelBufferInternal::COMPRESSION_UNIFORM) {
backing_buffer.resize(Vector3iUtil::get_volume(voxels.get_size()));
const T v = voxels.get_voxel(Vector3i(), channel);
// TODO Could use a fast fill using 8-byte blocks or intrinsics?
for (unsigned int i = 0; i < backing_buffer.size(); ++i) {
backing_buffer[i] = v;
}
2021-05-31 16:48:49 +01:00
return to_span_const(backing_buffer);
} else {
2021-05-31 16:48:49 +01:00
Span<uint8_t> data_bytes;
2022-04-13 23:15:32 +01:00
ZN_ASSERT(voxels.get_channel_raw(channel, data_bytes) == true);
return data_bytes.reinterpret_cast_to<const T>();
}
}
TextureIndicesData get_texture_indices_data(const VoxelBufferInternal &voxels, unsigned int channel,
DefaultTextureIndicesData &out_default_texture_indices_data) {
2022-04-13 23:15:32 +01:00
ZN_ASSERT_RETURN_V(voxels.get_channel_depth(channel) == VoxelBufferInternal::DEPTH_16_BIT, TextureIndicesData());
TextureIndicesData data;
if (voxels.is_uniform(channel)) {
const uint16_t encoded_indices = voxels.get_voxel(Vector3i(), channel);
data.default_indices = decode_indices_from_packed_u16(encoded_indices);
data.packed_default_indices = pack_bytes(data.default_indices);
out_default_texture_indices_data.indices = data.default_indices;
out_default_texture_indices_data.packed_indices = data.packed_default_indices;
out_default_texture_indices_data.use = true;
} else {
2021-05-31 16:48:49 +01:00
Span<uint8_t> data_bytes;
2022-04-13 23:15:32 +01:00
ZN_ASSERT(voxels.get_channel_raw(channel, data_bytes) == true);
data.buffer = data_bytes.reinterpret_cast_to<const uint16_t>();
out_default_texture_indices_data.use = false;
}
return data;
}
// I'm not really decided if doing this is better or not yet?
//#define USE_TRICHANNEL
#ifdef USE_TRICHANNEL
// TODO Is this a faster/equivalent option with better precision?
struct WeightSampler3U8 {
2021-05-31 16:48:49 +01:00
Span<const uint8_t> u8_data0;
Span<const uint8_t> u8_data1;
Span<const uint8_t> u8_data2;
inline FixedArray<uint8_t, 4> get_weights(int i) const {
FixedArray<uint8_t, 4> w;
w[0] = u8_data0[i];
w[1] = u8_data1[i];
w[2] = u8_data2[i];
w[3] = 255 - (w[0] + w[1] + w[2]);
return w;
}
};
thread_local std::vector<uint8_t> s_weights_backing_buffer_u8_0;
thread_local std::vector<uint8_t> s_weights_backing_buffer_u8_1;
thread_local std::vector<uint8_t> s_weights_backing_buffer_u8_2;
#else
struct WeightSamplerPackedU16 {
2021-05-31 16:48:49 +01:00
Span<const uint16_t> u16_data;
inline FixedArray<uint8_t, 4> get_weights(int i) const {
return decode_weights_from_packed_u16(u16_data[i]);
}
};
thread_local std::vector<uint16_t> s_weights_backing_buffer_u16;
#endif
// Presence of zeroes in samples occurs more often when precision is scarce
// (8-bit, scaled SDF, or slow gradients).
// This causes two symptoms:
// - Degenerate triangles. Potentially bad for systems using the mesh later (MeshOptimizer, physics)
// - Glitched triangles. Wrong vertices get re-used.
// Needs closer investigation to know why, maybe related to case selection
//
// See also https://github.com/zeux/meshoptimizer/issues/312
//
// A quick fix to avoid it is to add a tiny offset to values equal to the isolevel.
// It must be done on the whole buffer to ensure consistency (and not after early cell rejection),
// otherwise it can create gaps in the final mesh.
//
// Not used anymore for now, but if we get this problem again we may have to investigate
//
/*template <typename Sdf_T>
Span<const Sdf_T> apply_zero_sdf_fix(Span<const Sdf_T> p_sdf_data) {
2022-04-09 15:33:08 +01:00
ZN_PROFILE_SCOPE();
static thread_local std::vector<Sdf_T> s_sdf_backing_buffer;
std::vector<Sdf_T> &sdf_data = s_sdf_backing_buffer;
sdf_data.resize(p_sdf_data.size());
memcpy(sdf_data.data(), p_sdf_data.data(), p_sdf_data.size());
for (auto it = sdf_data.begin(); it != sdf_data.end(); ++it) {
if (*it == get_isolevel<Sdf_T>()) {
// Assuming Sdf_T is an integer. Might not be needed for floats.
*it += 1;
}
}
return to_span_const(sdf_data);
}*/
DefaultTextureIndicesData build_regular_mesh(const VoxelBufferInternal &voxels, unsigned int sdf_channel,
uint32_t lod_index, TexturingMode texturing_mode, Cache &cache, MeshArrays &output,
const IDeepSDFSampler *deep_sdf_sampler) {
2022-04-09 15:33:08 +01:00
ZN_PROFILE_SCOPE();
// From this point, we expect the buffer to contain allocated data in the relevant channels.
2021-05-31 16:48:49 +01:00
Span<uint8_t> sdf_data_raw;
2022-04-13 23:15:32 +01:00
ZN_ASSERT(voxels.get_channel_raw(sdf_channel, sdf_data_raw) == true);
const unsigned int voxels_count = Vector3iUtil::get_volume(voxels.get_size());
DefaultTextureIndicesData default_texture_indices_data;
default_texture_indices_data.use = false;
TextureIndicesData indices_data;
#ifdef USE_TRICHANNEL
WeightSampler3U8 weights_data;
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
// From this point we know SDF is not uniform so it has an allocated buffer,
// but it might have uniform indices or weights so we need to ensure there is a backing buffer.
indices_data =
get_texture_indices_data(voxels, VoxelBufferInternal::CHANNEL_INDICES, default_texture_indices_data);
weights_data.u8_data0 =
get_or_decompress_channel(voxels, s_weights_backing_buffer_u8_0, VoxelBufferInternal::CHANNEL_WEIGHTS);
weights_data.u8_data1 =
get_or_decompress_channel(voxels, s_weights_backing_buffer_u8_1, VoxelBufferInternal::CHANNEL_DATA5);
weights_data.u8_data2 =
get_or_decompress_channel(voxels, s_weights_backing_buffer_u8_2, VoxelBufferInternal::CHANNEL_DATA6);
ERR_FAIL_COND_V(weights_data.u8_data0.size() != voxels_count, default_texture_indices_data);
ERR_FAIL_COND_V(weights_data.u8_data1.size() != voxels_count, default_texture_indices_data);
ERR_FAIL_COND_V(weights_data.u8_data2.size() != voxels_count, default_texture_indices_data);
}
#else
WeightSamplerPackedU16 weights_data;
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
// From this point we know SDF is not uniform so it has an allocated buffer,
// but it might have uniform indices or weights so we need to ensure there is a backing buffer.
indices_data =
get_texture_indices_data(voxels, VoxelBufferInternal::CHANNEL_INDICES, default_texture_indices_data);
weights_data.u16_data =
get_or_decompress_channel(voxels, s_weights_backing_buffer_u16, VoxelBufferInternal::CHANNEL_WEIGHTS);
2022-04-13 23:15:32 +01:00
ZN_ASSERT_RETURN_V(weights_data.u16_data.size() == voxels_count, default_texture_indices_data);
}
#endif
2021-04-25 20:23:52 +01:00
// We settle data types up-front so we can get rid of abstraction layers and conditionals,
// which would otherwise harm performance in tight iterations
switch (voxels.get_channel_depth(sdf_channel)) {
case VoxelBufferInternal::DEPTH_8_BIT: {
2022-02-27 04:08:01 +00:00
Span<const int8_t> sdf_data = sdf_data_raw.reinterpret_cast_to<const int8_t>();
build_regular_mesh<int8_t>(sdf_data, indices_data, weights_data, voxels.get_size(), lod_index,
texturing_mode, cache, output, deep_sdf_sampler);
} break;
case VoxelBufferInternal::DEPTH_16_BIT: {
2022-02-27 04:08:01 +00:00
Span<const int16_t> sdf_data = sdf_data_raw.reinterpret_cast_to<const int16_t>();
build_regular_mesh<int16_t>(sdf_data, indices_data, weights_data, voxels.get_size(), lod_index,
texturing_mode, cache, output, deep_sdf_sampler);
} break;
// TODO Remove support for 32-bit SDF in Transvoxel?
// I don't think it's worth it. And it could reduce executable size significantly
// (the optimized obj size for just transvoxel.cpp is 1.2 Mb on Windows)
case VoxelBufferInternal::DEPTH_32_BIT: {
2021-05-31 16:48:49 +01:00
Span<const float> sdf_data = sdf_data_raw.reinterpret_cast_to<const float>();
build_regular_mesh<float>(sdf_data, indices_data, weights_data, voxels.get_size(), lod_index,
texturing_mode, cache, output, deep_sdf_sampler);
} break;
case VoxelBufferInternal::DEPTH_64_BIT:
2022-04-13 23:15:32 +01:00
ZN_PRINT_ERROR("Double-precision SDF channel is not supported");
// Not worth growing executable size for relatively pointless double-precision sdf
break;
default:
2022-04-13 23:15:32 +01:00
ZN_PRINT_ERROR("Invalid channel");
break;
}
return default_texture_indices_data;
}
void build_transition_mesh(const VoxelBufferInternal &voxels, unsigned int sdf_channel, int direction,
uint32_t lod_index, TexturingMode texturing_mode, Cache &cache, MeshArrays &output,
DefaultTextureIndicesData default_texture_indices_data) {
2022-04-09 15:33:08 +01:00
ZN_PROFILE_SCOPE();
// From this point, we expect the buffer to contain allocated data in the relevant channels.
2021-05-31 16:48:49 +01:00
Span<uint8_t> sdf_data_raw;
2022-04-13 23:15:32 +01:00
ZN_ASSERT(voxels.get_channel_raw(sdf_channel, sdf_data_raw) == true);
const unsigned int voxels_count = Vector3iUtil::get_volume(voxels.get_size());
// TODO Support more texturing data configurations
TextureIndicesData indices_data;
#ifdef USE_TRICHANNEL
WeightSampler3U8 weights_data;
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
if (default_texture_indices_data.use) {
indices_data.default_indices = default_texture_indices_data.indices;
indices_data.packed_default_indices = default_texture_indices_data.packed_indices;
} else {
// From this point we know SDF is not uniform so it has an allocated buffer,
// but it might have uniform indices or weights so we need to ensure there is a backing buffer.
// TODO Is it worth doing conditionnals instead during meshing?
indices_data = get_texture_indices_data(
voxels, VoxelBufferInternal::CHANNEL_INDICES, default_texture_indices_data);
}
weights_data.u8_data0 =
get_or_decompress_channel(voxels, s_weights_backing_buffer_u8_0, VoxelBufferInternal::CHANNEL_WEIGHTS);
weights_data.u8_data1 =
get_or_decompress_channel(voxels, s_weights_backing_buffer_u8_1, VoxelBufferInternal::CHANNEL_DATA5);
weights_data.u8_data2 =
get_or_decompress_channel(voxels, s_weights_backing_buffer_u8_2, VoxelBufferInternal::CHANNEL_DATA6);
ERR_FAIL_COND(weights_data.u8_data0.size() != voxels_count);
ERR_FAIL_COND(weights_data.u8_data1.size() != voxels_count);
ERR_FAIL_COND(weights_data.u8_data2.size() != voxels_count);
}
#else
WeightSamplerPackedU16 weights_data;
if (texturing_mode == TEXTURES_BLEND_4_OVER_16) {
if (default_texture_indices_data.use) {
indices_data.default_indices = default_texture_indices_data.indices;
indices_data.packed_default_indices = default_texture_indices_data.packed_indices;
} else {
// From this point we know SDF is not uniform so it has an allocated buffer,
// but it might have uniform indices or weights so we need to ensure there is a backing buffer.
// TODO Is it worth doing conditionnals instead during meshing?
indices_data = get_texture_indices_data(
voxels, VoxelBufferInternal::CHANNEL_INDICES, default_texture_indices_data);
}
weights_data.u16_data =
get_or_decompress_channel(voxels, s_weights_backing_buffer_u16, VoxelBufferInternal::CHANNEL_WEIGHTS);
2022-04-13 23:15:32 +01:00
ZN_ASSERT_RETURN(weights_data.u16_data.size() == voxels_count);
}
#endif
switch (voxels.get_channel_depth(sdf_channel)) {
case VoxelBufferInternal::DEPTH_8_BIT: {
2022-02-27 04:08:01 +00:00
Span<const int8_t> sdf_data = sdf_data_raw.reinterpret_cast_to<const int8_t>();
build_transition_mesh<int8_t>(sdf_data, indices_data, weights_data, voxels.get_size(), direction, lod_index,
texturing_mode, cache, output);
} break;
case VoxelBufferInternal::DEPTH_16_BIT: {
2022-02-27 04:08:01 +00:00
Span<const int16_t> sdf_data = sdf_data_raw.reinterpret_cast_to<const int16_t>();
build_transition_mesh<int16_t>(sdf_data, indices_data, weights_data, voxels.get_size(), direction,
lod_index, texturing_mode, cache, output);
} break;
case VoxelBufferInternal::DEPTH_32_BIT: {
2021-05-31 16:48:49 +01:00
Span<const float> sdf_data = sdf_data_raw.reinterpret_cast_to<const float>();
build_transition_mesh<float>(sdf_data, indices_data, weights_data, voxels.get_size(), direction, lod_index,
texturing_mode, cache, output);
} break;
case VoxelBufferInternal::DEPTH_64_BIT:
2022-04-13 23:15:32 +01:00
ZN_PRINT_ERROR("Double-precision SDF channel is not supported");
// Not worth growing executable size for relatively pointless double-precision sdf
break;
default:
2022-04-13 23:15:32 +01:00
ZN_PRINT_ERROR("Invalid channel");
break;
}
}
2022-01-04 00:12:42 +00:00
} // namespace zylann::voxel::transvoxel