[ChunkMeshBuilder] Splitted into multiple files.

master
Quentin Bazin 2021-06-17 21:36:52 +02:00
parent 7d375ac843
commit 89369ee335
9 changed files with 713 additions and 454 deletions

View File

@ -24,13 +24,13 @@
*
* =====================================================================================
*/
#include "BlockGeometry.hpp"
#include "ChunkMeshBuilder.hpp"
#include "ClientProfiler.hpp"
#include "ClientWorld.hpp"
#include "TextureAtlas.hpp"
using namespace BlockGeometry;
#include "BlockMesher.hpp"
#include "XShapeMesher.hpp"
// NOTE: TextureAtlas and Registry are accessed from different threads.
//
@ -49,27 +49,7 @@ void ChunkMeshBuilder::addMeshBuildingJob(const Chunk &chunk, const TextureAtlas
job.chunkData.loadFromChunk(chunk);
// Send the job to the thread pool
auto future = thread::DefaultThreadPool::submitJob([](ChunkMeshBuildingJob job) {
// For each block, generate its vertices and add them to the list
for (s8f z = 0 ; z < CHUNK_HEIGHT ; z++) {
for (s8f y = 0 ; y < CHUNK_DEPTH ; y++) {
for (s8f x = 0 ; x < CHUNK_WIDTH ; x++) {
u16 blockID = job.chunkData.getBlockID(x, y, z);
if (!blockID) continue;
u16 blockParam = job.chunkData.getBlockParam(x, y, z);
const BlockState &blockState = ChunkData::getBlockState(blockID, blockParam);
if (blockState.drawType() == BlockDrawType::XShape)
addCross(x, y, z, job, blockState);
else
addCube(x, y, z, job, blockState, blockParam);
}
}
}
return job;
}, job);
auto future = thread::DefaultThreadPool::submitJob(&ChunkMeshBuilder::buildChunkMesh, job);
m_futures.emplace_back(std::move(future));
@ -108,352 +88,25 @@ void ChunkMeshBuilder::update() {
}
}
inline void ChunkMeshBuilder::addCube(s8f x, s8f y, s8f z, ChunkMeshBuildingJob &job, const BlockState &blockState, u16 blockParam) {
const gk::FloatBox &boundingBox = blockState.boundingBox();
ChunkMeshBuildingJob ChunkMeshBuilder::buildChunkMesh(ChunkMeshBuildingJob job) {
// For each block, generate its vertices and add them to the list
for (s8f z = 0 ; z < CHUNK_HEIGHT ; z++) {
for (s8f y = 0 ; y < CHUNK_DEPTH ; y++) {
for (s8f x = 0 ; x < CHUNK_WIDTH ; x++) {
u16 blockID = job.chunkData.getBlockID(x, y, z);
if (!blockID) continue;
u8f orientation = blockState.block().isRotatable()
? (u8f)blockState.block().param().getParam(BlockParam::Rotation, blockParam) : 0;
const glm::mat3 &orientMatrix = orientMatrices[orientation];
u16 blockParam = job.chunkData.getBlockParam(x, y, z);
const BlockState &blockState = ChunkData::getBlockState(blockID, blockParam);
glm::vec3 vertexPos[nVertsPerCube]{
// Order is important. It matches the bit order defined in BlockGeometry::cubeVerts.
{boundingBox.x, boundingBox.y, boundingBox.z},
{boundingBox.x + boundingBox.sizeX, boundingBox.y, boundingBox.z},
{boundingBox.x, boundingBox.y + boundingBox.sizeY, boundingBox.z},
{boundingBox.x + boundingBox.sizeX, boundingBox.y + boundingBox.sizeY, boundingBox.z},
{boundingBox.x, boundingBox.y, boundingBox.z + boundingBox.sizeZ},
{boundingBox.x + boundingBox.sizeX, boundingBox.y, boundingBox.z + boundingBox.sizeZ},
{boundingBox.x, boundingBox.y + boundingBox.sizeY, boundingBox.z + boundingBox.sizeZ},
{boundingBox.x + boundingBox.sizeX, boundingBox.y + boundingBox.sizeY, boundingBox.z + boundingBox.sizeZ},
};
if (blockState.drawType() == BlockDrawType::Cactus) {
// Ignore bounding box, initialize it to full node coordinates
for (u8f i = 0; i < nVertsPerCube; ++i) {
vertexPos[i].x = float((i >> 0) & 1);
vertexPos[i].y = float((i >> 1) & 1);
vertexPos[i].z = float((i >> 2) & 1);
}
}
// vNeighbour is used to find neighbouring cubes per vertex.
// Same binary layout.
glm::vec3 vNeighbour[nVertsPerCube] = {
{-1,-1,-1}, { 1,-1,-1}, {-1, 1,-1}, { 1, 1,-1}, {-1,-1, 1}, { 1,-1, 1}, {-1, 1, 1}, {1, 1, 1},
};
if (orientation) { // don't work extra if it's not oriented differently
static const glm::vec3 half{0.5, 0.5, 0.5};
// Rotate each vertex coordinate around the centre of the
// cube, and each vertex neighbour around the origin
for (int i = 0; i < nVertsPerCube; ++i) {
vertexPos[i] = orientMatrix * (vertexPos[i] - half) + half;
vNeighbour[i] = orientMatrix * vNeighbour[i];
}
}
for (s8f f = 0; f < nFaces ; ++f) {
// Construct the normal vector to a face
const glm::vec3 glmNormal = orientMatrix * faceNormals[f];
const gk::Vector3<s8f> normal{s8f(glmNormal.x), s8f(glmNormal.y), s8f(glmNormal.z)};
// Construct an array with the 4 vertex positions of this face
glm::vec3 *faceVerts[nVertsPerFace]{
&vertexPos[cubeVerts[f][0]], &vertexPos[cubeVerts[f][1]],
&vertexPos[cubeVerts[f][2]], &vertexPos[cubeVerts[f][3]]
};
// Construct an array with the 4 vertex neighbours of this face
// (as GameKit integer vectors)
const gk::Vector3<s8f> corner0{s8f(vNeighbour[cubeVerts[f][0]].x), s8f(vNeighbour[cubeVerts[f][0]].y), s8f(vNeighbour[cubeVerts[f][0]].z)};
const gk::Vector3<s8f> corner1{s8f(vNeighbour[cubeVerts[f][1]].x), s8f(vNeighbour[cubeVerts[f][1]].y), s8f(vNeighbour[cubeVerts[f][1]].z)};
const gk::Vector3<s8f> corner2{s8f(vNeighbour[cubeVerts[f][2]].x), s8f(vNeighbour[cubeVerts[f][2]].y), s8f(vNeighbour[cubeVerts[f][2]].z)};
const gk::Vector3<s8f> corner3{s8f(vNeighbour[cubeVerts[f][3]].x), s8f(vNeighbour[cubeVerts[f][3]].y), s8f(vNeighbour[cubeVerts[f][3]].z)};
const gk::Vector3<s8f> *vFaceNeighbours[nVertsPerFace]{&corner0, &corner1, &corner2, &corner3};
addCubeFace(x, y, z, f, job, blockState, normal, faceVerts, vFaceNeighbours);
}
}
inline void ChunkMeshBuilder::addCubeFace(s8f x, s8f y, s8f z, s8f f, ChunkMeshBuildingJob &job,
const BlockState &blockState,
const gk::Vector3<s8f> &normal,
const glm::vec3 *const vertexPos[nVertsPerFace],
const gk::Vector3<s8f> *const neighbourOfs[nVertsPerFace])
{
// Get surrounding block for the face
s8f sx = x + normal.x;
s8f sy = y + normal.y;
s8f sz = z + normal.z;
const BlockState *surroundingBlockState = job.chunkData.getBlockState(sx, sy, sz);
// Skip hidden faces
if (surroundingBlockState && surroundingBlockState->block().id()
&& ((blockState.drawType() == BlockDrawType::Solid && surroundingBlockState->drawType() == BlockDrawType::Solid && surroundingBlockState->isOpaque())
|| (blockState.block().id() == surroundingBlockState->block().id() && (blockState.drawType() == BlockDrawType::Liquid || blockState.drawType() == BlockDrawType::Glass))
|| (blockState.drawType() == BlockDrawType::Liquid && surroundingBlockState->drawType() == BlockDrawType::Solid)
|| (blockState.drawType() == BlockDrawType::Cactus && surroundingBlockState->block().id() == blockState.block().id() && f > 3)))
return;
const gk::FloatBox &boundingBox = blockState.boundingBox();
const std::string &texture = blockState.tiles().getTextureForFace(f);
const gk::FloatRect &blockTexCoords = job.textureAtlas->getTexCoords(texture);
// Calculate UV's
// These are tough to obtain. Note that texture Y grows in the up-down direction, and so does V.
// Vertex index in the bitmap array and U/V correspondence is:
// U0V0 -> 3 2 <- U1V0
// U0V1 -> 0 1 <- U1V1
float U0, V0, U1, V1;
if (blockState.drawType() == BlockDrawType::Cactus) {
U0 = 0.f;
V0 = 0.f;
U1 = 1.f;
V1 = 1.f;
}
else {
U0 = (f == 0) ? 1.f - (boundingBox.y + boundingBox.sizeY) : (f == 1) ? boundingBox.y :
(f == 3) ? 1.f - (boundingBox.x + boundingBox.sizeX) : boundingBox.x;
V0 = (f <= 3) ? 1.f - (boundingBox.z + boundingBox.sizeZ) : (f == 4) ? boundingBox.y : 1.f - (boundingBox.y + boundingBox.sizeY);
U1 = (f == 0) ? 1.f - boundingBox.y : (f == 1) ? boundingBox.y + boundingBox.sizeY :
(f == 3) ? 1.f - boundingBox.x : boundingBox.x + boundingBox.sizeX;
V1 = (f <= 3) ? 1.f - boundingBox.z : (f == 4) ? boundingBox.y + boundingBox.sizeY : 1.f - boundingBox.y;
}
// Prepare vertex information for VBO
Vertex vertices[nVertsPerFace];
for (s8f v = 0; v < nVertsPerFace; ++v) {
if (blockState.drawType() == BlockDrawType::Cactus) {
vertices[v].coord3d[0] = x + vertexPos[v]->x - boundingBox.x * (float)normal.x;
vertices[v].coord3d[1] = y + vertexPos[v]->y - boundingBox.y * (float)normal.y;
vertices[v].coord3d[2] = z + vertexPos[v]->z - boundingBox.z * (float)normal.z;
}
else {
float blockHeight = vertexPos[v]->z;
if (blockState.drawType() == BlockDrawType::Liquid) {
const BlockState *topBlockState = job.chunkData.getBlockState(x, y, z + 1);
if (f != BlockFace::Bottom && (!topBlockState || !topBlockState->block().id())) {
blockHeight *= 14.f / 16.f;
}
if (blockState.drawType() == BlockDrawType::XShape)
XShapeMesher::addCross(x, y, z, job, blockState);
else
BlockMesher::addCube(x, y, z, job, blockState, blockParam);
}
vertices[v].coord3d[0] = x + vertexPos[v]->x;
vertices[v].coord3d[1] = y + vertexPos[v]->y;
vertices[v].coord3d[2] = z + blockHeight;
}
vertices[v].coord3d[0] += blockState.drawOffset().x;
vertices[v].coord3d[1] += blockState.drawOffset().y;
vertices[v].coord3d[2] += blockState.drawOffset().z;
vertices[v].coord3d[3] = f;
vertices[v].normal[0] = (float)normal.x;
vertices[v].normal[1] = (float)normal.y;
vertices[v].normal[2] = (float)normal.z;
const gk::Color colorMultiplier = blockState.colorMultiplier();
vertices[v].color[0] = colorMultiplier.r;
vertices[v].color[1] = colorMultiplier.g;
vertices[v].color[2] = colorMultiplier.b;
vertices[v].color[3] = colorMultiplier.a;
float U = (v == 0 || v == 3) ? U0 : U1;
float V = (v >= 2) ? V0 : V1;
vertices[v].texCoord[0] = gk::qlerpf(blockTexCoords.x, blockTexCoords.x + blockTexCoords.sizeX, U);
vertices[v].texCoord[1] = gk::qlerpf(blockTexCoords.y, blockTexCoords.y + blockTexCoords.sizeY, V);
if (Config::isSmoothLightingEnabled)
vertices[v].lightValue[0] = getLightForVertex(Light::Sun, x, y, z, *neighbourOfs[v], normal, job.chunkData);
else
vertices[v].lightValue[0] = job.chunkData.getSunlight(sx, sy, sz);
if (Config::isSmoothLightingEnabled && !blockState.isLightSource())
vertices[v].lightValue[1] = getLightForVertex(Light::Torch, x, y, z, *neighbourOfs[v], normal, job.chunkData);
else if (blockState.isOpaque())
vertices[v].lightValue[1] = job.chunkData.getTorchlight(sx, sy, sz);
else
vertices[v].lightValue[1] = job.chunkData.getTorchlight(x, y, z);
vertices[v].ambientOcclusion = getAmbientOcclusion(x, y, z, *neighbourOfs[v], normal, job.chunkData);
}
auto addVertex = [&](u8 v) {
if (Config::ambientOcclusion != 1 || blockState.isLightSource())
vertices[v].ambientOcclusion = 4;
if (blockState.drawType() == BlockDrawType::Liquid)
job.vertices[ChunkMeshLayer::Liquid].emplace_back(vertices[v]);
else if (blockState.drawType() == BlockDrawType::Glass)
job.vertices[ChunkMeshLayer::Glass].emplace_back(vertices[v]);
else if (blockState.colorMultiplier() != gk::Color::White)
job.vertices[ChunkMeshLayer::NoMipMap].emplace_back(vertices[v]);
else
job.vertices[ChunkMeshLayer::Solid].emplace_back(vertices[v]);
};
// Flipping quad to fix anisotropy issue
if (vertices[0].ambientOcclusion + vertices[2].ambientOcclusion >
vertices[1].ambientOcclusion + vertices[3].ambientOcclusion) {
addVertex(0);
addVertex(1);
addVertex(2);
addVertex(2);
addVertex(3);
addVertex(0);
} else {
addVertex(0);
addVertex(1);
addVertex(3);
addVertex(3);
addVertex(1);
addVertex(2);
}
job.totalVertexCount += 6;
}
inline void ChunkMeshBuilder::addCross(s8f x, s8f y, s8f z, ChunkMeshBuildingJob &job, const BlockState &blockState) {
glm::vec3 vertexPos[nVertsPerCube]{
{0, 0, 0},
{1, 0, 0},
{0, 1, 0},
{1, 1, 0},
{0, 0, 1},
{1, 0, 1},
{0, 1, 1},
{1, 1, 1},
};
const glm::vec3 *const faceVertices[nCrossFaces][nVertsPerFace]{
{&vertexPos[crossVerts[0][0]], &vertexPos[crossVerts[0][1]],
&vertexPos[crossVerts[0][2]], &vertexPos[crossVerts[0][3]]},
{&vertexPos[crossVerts[1][0]], &vertexPos[crossVerts[1][1]],
&vertexPos[crossVerts[1][2]], &vertexPos[crossVerts[1][3]]},
};
const std::string &texture = blockState.tiles().getTextureForFace(0);
const gk::FloatRect &blockTexCoords = job.textureAtlas->getTexCoords(texture);
float faceTexCoords[nVertsPerFace][nCoordsPerUV] = {
{blockTexCoords.x, blockTexCoords.y + blockTexCoords.sizeY},
{blockTexCoords.x + blockTexCoords.sizeX, blockTexCoords.y + blockTexCoords.sizeY},
{blockTexCoords.x + blockTexCoords.sizeX, blockTexCoords.y},
{blockTexCoords.x, blockTexCoords.y},
};
for (int f = 0; f < nCrossFaces ; ++f) {
Vertex vertices[nVertsPerFace];
for (int v = 0 ; v < nVertsPerFace ; ++v) {
vertices[v].coord3d[0] = x + faceVertices[f][v]->x + blockState.drawOffset().x;
vertices[v].coord3d[1] = y + faceVertices[f][v]->y + blockState.drawOffset().y;
vertices[v].coord3d[2] = z + faceVertices[f][v]->z + blockState.drawOffset().z;
vertices[v].coord3d[3] = 6;
vertices[v].normal[0] = 0;
vertices[v].normal[1] = 0;
vertices[v].normal[2] = 0;
const gk::Color colorMultiplier = blockState.colorMultiplier();
vertices[v].color[0] = colorMultiplier.r;
vertices[v].color[1] = colorMultiplier.g;
vertices[v].color[2] = colorMultiplier.b;
vertices[v].color[3] = colorMultiplier.a;
vertices[v].texCoord[0] = faceTexCoords[v][0];
vertices[v].texCoord[1] = faceTexCoords[v][1];
vertices[v].lightValue[0] = job.chunkData.getSunlight(x, y, z);
vertices[v].lightValue[1] = job.chunkData.getTorchlight(x, y, z);
vertices[v].ambientOcclusion = 4;
}
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[0]);
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[1]);
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[3]);
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[3]);
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[1]);
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[2]);
job.totalVertexCount += 6;
}
}
// Based on this article: https://0fps.net/2013/07/03/ambient-occlusion-for-minecraft-like-worlds/
inline u8 ChunkMeshBuilder::getAmbientOcclusion(s8f x, s8f y, s8f z, const gk::Vector3<s8f> &offset, const gk::Vector3<s8f> &normal, const ChunkData &chunk) {
gk::Vector3<s8f> minOffset{
s8f((normal.x != 0) ? offset.x : 0),
s8f((normal.y != 0) ? offset.y : 0),
s8f((normal.z != 0) ? offset.z : 0)
};
const BlockState *blocks[4] = {
chunk.getBlockState(x + minOffset.x, y + minOffset.y, z + offset.z),
chunk.getBlockState(x + offset.x, y + minOffset.y, z + minOffset.z),
chunk.getBlockState(x + minOffset.x, y + offset.y, z + minOffset.z),
chunk.getBlockState(x + offset.x, y + offset.y, z + offset.z)
};
bool blockPresence[4] = {
blocks[0] && blocks[0]->block().id() != 0 && blocks[0]->isOpaque(),
blocks[1] && blocks[1]->block().id() != 0 && blocks[1]->isOpaque(),
blocks[2] && blocks[2]->block().id() != 0 && blocks[2]->isOpaque(),
blocks[3] && blocks[3]->block().id() != 0 && blocks[3]->isOpaque()
};
bool side1 = blockPresence[(minOffset.x != 0) ? 2 : 1];
bool side2 = blockPresence[(minOffset.z != 0) ? 2 : 0];
bool corner = blockPresence[3];
return u8((side1 && side2) ? 0 : 3 - (side1 + side2 + corner));
}
inline u8 ChunkMeshBuilder::getLightForVertex(Light light, s8f x, s8f y, s8f z, const gk::Vector3<s8f> &offset, const gk::Vector3<s8f> &normal, const ChunkData &chunk) {
gk::Vector3<s8f> minOffset{
(normal.x != 0) ? offset.x : s8f(0),
(normal.y != 0) ? offset.y : s8f(0),
(normal.z != 0) ? offset.z : s8f(0)
};
gk::Vector3<s8f> surroundingBlocks[4]{
{s8f(x + minOffset.x), s8f(y + minOffset.y), s8f(z + offset.z)},
{s8f(x + offset.x), s8f(y + minOffset.y), s8f(z + minOffset.z)},
{s8f(x + minOffset.x), s8f(y + offset.y), s8f(z + minOffset.z)},
{s8f(x + offset.x), s8f(y + offset.y), s8f(z + offset.z)}
};
auto getLight = [&](const ChunkData &chunk, s8f x, s8f y, s8f z) -> s8 {
return (light == Light::Sun) ? chunk.getSunlight(x, y, z) : chunk.getTorchlight(x, y, z);
};
// Get light values for surrounding blocks
s8 lightValues[4] = {
getLight(chunk, surroundingBlocks[0].x, surroundingBlocks[0].y, surroundingBlocks[0].z),
getLight(chunk, surroundingBlocks[1].x, surroundingBlocks[1].y, surroundingBlocks[1].z),
getLight(chunk, surroundingBlocks[2].x, surroundingBlocks[2].y, surroundingBlocks[2].z),
getLight(chunk, surroundingBlocks[3].x, surroundingBlocks[3].y, surroundingBlocks[3].z),
};
u8 count = 0, total = 0;
for (u8 i = 0 ; i < 4 ; ++i) {
// Fix light approximation
if (i == 3 && lightValues[i] > lightValues[0] && !lightValues[1] && !lightValues[2])
continue;
// If the chunk is initialized, add the light value to the total
// But only add dark blocks if AO is set on Smooth Lighting
if (lightValues[i] != -1 && (Config::ambientOcclusion == 2 || lightValues[i] != 0)) {
total += (u8)lightValues[i];
++count;
}
}
if (count)
return u8(total / count);
else
return 0;
return job;
}

View File

@ -29,77 +29,7 @@
#include <thread/ThreadPool.hpp>
#include "Chunk.hpp"
#include "ChunkMeshLayer.hpp"
#include "Registry.hpp"
#include "TextureAtlas.hpp"
#include "Vertex.hpp"
struct ChunkData {
s32 x, y, z;
u32 data[CHUNK_HEIGHT + 2][CHUNK_DEPTH + 2][CHUNK_WIDTH + 2];
std::optional<u8> lightData[CHUNK_HEIGHT + 2][CHUNK_DEPTH + 2][CHUNK_WIDTH + 2];
void loadFromChunk(const Chunk &chunk) {
x = chunk.x();
y = chunk.y();
z = chunk.z();
for (s8f z = -1 ; z <= CHUNK_HEIGHT ; ++z) {
for (s8f y = -1 ; y <= CHUNK_DEPTH ; ++y) {
for (s8f x = -1 ; x <= CHUNK_WIDTH ; ++x) {
data[z + 1][y + 1][x + 1] = chunk.getFullBlock(x, y, z);
lightData[z + 1][y + 1][x + 1] = chunk.lightmap().tryGetLightData(x, y, z);
}
}
}
}
u16 getBlockID(s8f x, s8f y, s8f z) const {
return u16(data[z + 1][y + 1][x + 1] & 0xffff);
}
u16 getBlockParam(s8f x, s8f y, s8f z) const {
return u16((data[z + 1][y + 1][x + 1] >> 16) & 0xffff);
}
s8 getTorchlight(s8f x, s8f y, s8f z) const {
auto light = lightData[z + 1][y + 1][x + 1];
return light ? light.value() & 0xf : -1;
}
s8 getSunlight(s8f x, s8f y, s8f z) const {
auto light = lightData[z + 1][y + 1][x + 1];
return light ? (light.value() >> 4) & 0xf : -1;
}
const BlockState *getBlockState(s8f x, s8f y, s8f z) const {
if (!lightData[z + 1][y + 1][x + 1]) return nullptr;
u16 blockID = getBlockID(x, y, z);
u16 blockParam = getBlockParam(x, y, z);
return &getBlockState(blockID, blockParam);
}
static const BlockState &getBlockState(u16 blockID, u16 blockParam) {
const Block &block = Registry::getInstance().getBlock(blockID);
return block.getState(block.param().hasParam(BlockParam::State) ?
block.param().getParam(BlockParam::State, blockParam) : 0);
}
};
struct ChunkMeshBuildingJob {
using VerticesArray = std::array<std::vector<Vertex>, ChunkMeshLayer::Count>;
ChunkData chunkData;
VerticesArray vertices;
const TextureAtlas *textureAtlas;
u64 totalVertexCount = 0;
};
#include "ChunkMeshBuildingJob.hpp"
class ClientWorld;
@ -112,24 +42,7 @@ class ChunkMeshBuilder {
void update();
private:
static void addCross(s8f x, s8f y, s8f z, ChunkMeshBuildingJob &job, const BlockState &blockState);
static void addCube(s8f x, s8f y, s8f z, ChunkMeshBuildingJob &job, const BlockState &blockState, u16 blockParam);
static void addCubeFace(s8f x, s8f y, s8f z, s8f f, ChunkMeshBuildingJob &job,
const BlockState &blockState,
const gk::Vector3<s8f> &normal, const glm::vec3 *const vertexPos[4],
const gk::Vector3<s8f> *const neighbourOfs[4]);
enum class Light {
Sun,
Torch
};
static u8 getAmbientOcclusion(s8f x, s8f y, s8f z, const gk::Vector3<s8f> &offset,
const gk::Vector3<s8f> &normal, const ChunkData &chunk);
static u8 getLightForVertex(Light light, s8f x, s8f y, s8f z, const gk::Vector3<s8f> &offset,
const gk::Vector3<s8f> &normal, const ChunkData &chunk);
static ChunkMeshBuildingJob buildChunkMesh(ChunkMeshBuildingJob job);
ClientWorld &m_world;

View File

@ -0,0 +1,246 @@
/*
* =====================================================================================
*
* OpenMiner
*
* Copyright (C) 2018-2020 Unarelith, Quentin Bazin <openminer@unarelith.net>
* Copyright (C) 2019-2020 the OpenMiner contributors (see CONTRIBUTORS.md)
*
* This file is part of OpenMiner.
*
* OpenMiner is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* OpenMiner is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with OpenMiner; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* =====================================================================================
*/
#include "BlockGeometry.hpp"
#include "BlockMesher.hpp"
#include "Config.hpp"
#include "LightUtils.hpp"
using namespace BlockGeometry;
using namespace LightUtils;
void BlockMesher::addCube(s8f x, s8f y, s8f z, ChunkMeshBuildingJob &job,
const BlockState &blockState, u16 blockParam)
{
const gk::FloatBox &boundingBox = blockState.boundingBox();
u8f orientation = blockState.block().isRotatable()
? (u8f)blockState.block().param().getParam(BlockParam::Rotation, blockParam) : 0;
const glm::mat3 &orientMatrix = orientMatrices[orientation];
glm::vec3 vertexPos[nVertsPerCube]{
// Order is important. It matches the bit order defined in BlockGeometry::cubeVerts.
{boundingBox.x, boundingBox.y, boundingBox.z},
{boundingBox.x + boundingBox.sizeX, boundingBox.y, boundingBox.z},
{boundingBox.x, boundingBox.y + boundingBox.sizeY, boundingBox.z},
{boundingBox.x + boundingBox.sizeX, boundingBox.y + boundingBox.sizeY, boundingBox.z},
{boundingBox.x, boundingBox.y, boundingBox.z + boundingBox.sizeZ},
{boundingBox.x + boundingBox.sizeX, boundingBox.y, boundingBox.z + boundingBox.sizeZ},
{boundingBox.x, boundingBox.y + boundingBox.sizeY, boundingBox.z + boundingBox.sizeZ},
{boundingBox.x + boundingBox.sizeX, boundingBox.y + boundingBox.sizeY, boundingBox.z + boundingBox.sizeZ},
};
if (blockState.drawType() == BlockDrawType::Cactus) {
// Ignore bounding box, initialize it to full node coordinates
for (u8f i = 0; i < nVertsPerCube; ++i) {
vertexPos[i].x = float((i >> 0) & 1);
vertexPos[i].y = float((i >> 1) & 1);
vertexPos[i].z = float((i >> 2) & 1);
}
}
// vNeighbour is used to find neighbouring cubes per vertex.
// Same binary layout.
glm::vec3 vNeighbour[nVertsPerCube] = {
{-1,-1,-1}, { 1,-1,-1}, {-1, 1,-1}, { 1, 1,-1}, {-1,-1, 1}, { 1,-1, 1}, {-1, 1, 1}, {1, 1, 1},
};
if (orientation) { // don't work extra if it's not oriented differently
static const glm::vec3 half{0.5, 0.5, 0.5};
// Rotate each vertex coordinate around the centre of the
// cube, and each vertex neighbour around the origin
for (int i = 0; i < nVertsPerCube; ++i) {
vertexPos[i] = orientMatrix * (vertexPos[i] - half) + half;
vNeighbour[i] = orientMatrix * vNeighbour[i];
}
}
for (s8f f = 0; f < nFaces ; ++f) {
// Construct the normal vector to a face
const glm::vec3 glmNormal = orientMatrix * faceNormals[f];
const gk::Vector3<s8f> normal{s8f(glmNormal.x), s8f(glmNormal.y), s8f(glmNormal.z)};
// Construct an array with the 4 vertex positions of this face
glm::vec3 *faceVerts[nVertsPerFace]{
&vertexPos[cubeVerts[f][0]], &vertexPos[cubeVerts[f][1]],
&vertexPos[cubeVerts[f][2]], &vertexPos[cubeVerts[f][3]]
};
// Construct an array with the 4 vertex neighbours of this face
// (as GameKit integer vectors)
const gk::Vector3<s8f> corner0{s8f(vNeighbour[cubeVerts[f][0]].x), s8f(vNeighbour[cubeVerts[f][0]].y), s8f(vNeighbour[cubeVerts[f][0]].z)};
const gk::Vector3<s8f> corner1{s8f(vNeighbour[cubeVerts[f][1]].x), s8f(vNeighbour[cubeVerts[f][1]].y), s8f(vNeighbour[cubeVerts[f][1]].z)};
const gk::Vector3<s8f> corner2{s8f(vNeighbour[cubeVerts[f][2]].x), s8f(vNeighbour[cubeVerts[f][2]].y), s8f(vNeighbour[cubeVerts[f][2]].z)};
const gk::Vector3<s8f> corner3{s8f(vNeighbour[cubeVerts[f][3]].x), s8f(vNeighbour[cubeVerts[f][3]].y), s8f(vNeighbour[cubeVerts[f][3]].z)};
const gk::Vector3<s8f> *vFaceNeighbours[nVertsPerFace]{&corner0, &corner1, &corner2, &corner3};
addCubeFace(x, y, z, f, job, blockState, normal, faceVerts, vFaceNeighbours);
}
}
void BlockMesher::addCubeFace(s8f x, s8f y, s8f z, s8f f, ChunkMeshBuildingJob &job,
const BlockState &blockState,
const gk::Vector3<s8f> &normal,
const glm::vec3 *const vertexPos[nVertsPerFace],
const gk::Vector3<s8f> *const neighbourOfs[nVertsPerFace])
{
// Get surrounding block for the face
s8f sx = x + normal.x;
s8f sy = y + normal.y;
s8f sz = z + normal.z;
const BlockState *surroundingBlockState = job.chunkData.getBlockState(sx, sy, sz);
// Skip hidden faces
if (surroundingBlockState && surroundingBlockState->block().id()
&& ((blockState.drawType() == BlockDrawType::Solid && surroundingBlockState->drawType() == BlockDrawType::Solid && surroundingBlockState->isOpaque())
|| (blockState.block().id() == surroundingBlockState->block().id() && (blockState.drawType() == BlockDrawType::Liquid || blockState.drawType() == BlockDrawType::Glass))
|| (blockState.drawType() == BlockDrawType::Liquid && surroundingBlockState->drawType() == BlockDrawType::Solid)
|| (blockState.drawType() == BlockDrawType::Cactus && surroundingBlockState->block().id() == blockState.block().id() && f > 3)))
return;
const gk::FloatBox &boundingBox = blockState.boundingBox();
const std::string &texture = blockState.tiles().getTextureForFace(f);
const gk::FloatRect &blockTexCoords = job.textureAtlas->getTexCoords(texture);
// Calculate UV's
// These are tough to obtain. Note that texture Y grows in the up-down direction, and so does V.
// Vertex index in the bitmap array and U/V correspondence is:
// U0V0 -> 3 2 <- U1V0
// U0V1 -> 0 1 <- U1V1
float U0, V0, U1, V1;
if (blockState.drawType() == BlockDrawType::Cactus) {
U0 = 0.f;
V0 = 0.f;
U1 = 1.f;
V1 = 1.f;
}
else {
U0 = (f == 0) ? 1.f - (boundingBox.y + boundingBox.sizeY) : (f == 1) ? boundingBox.y :
(f == 3) ? 1.f - (boundingBox.x + boundingBox.sizeX) : boundingBox.x;
V0 = (f <= 3) ? 1.f - (boundingBox.z + boundingBox.sizeZ) : (f == 4) ? boundingBox.y : 1.f - (boundingBox.y + boundingBox.sizeY);
U1 = (f == 0) ? 1.f - boundingBox.y : (f == 1) ? boundingBox.y + boundingBox.sizeY :
(f == 3) ? 1.f - boundingBox.x : boundingBox.x + boundingBox.sizeX;
V1 = (f <= 3) ? 1.f - boundingBox.z : (f == 4) ? boundingBox.y + boundingBox.sizeY : 1.f - boundingBox.y;
}
// Prepare vertex information for VBO
Vertex vertices[nVertsPerFace];
for (s8f v = 0; v < nVertsPerFace; ++v) {
if (blockState.drawType() == BlockDrawType::Cactus) {
vertices[v].coord3d[0] = x + vertexPos[v]->x - boundingBox.x * (float)normal.x;
vertices[v].coord3d[1] = y + vertexPos[v]->y - boundingBox.y * (float)normal.y;
vertices[v].coord3d[2] = z + vertexPos[v]->z - boundingBox.z * (float)normal.z;
}
else {
float blockHeight = vertexPos[v]->z;
if (blockState.drawType() == BlockDrawType::Liquid) {
const BlockState *topBlockState = job.chunkData.getBlockState(x, y, z + 1);
if (f != BlockFace::Bottom && (!topBlockState || !topBlockState->block().id())) {
blockHeight *= 14.f / 16.f;
}
}
vertices[v].coord3d[0] = x + vertexPos[v]->x;
vertices[v].coord3d[1] = y + vertexPos[v]->y;
vertices[v].coord3d[2] = z + blockHeight;
}
vertices[v].coord3d[0] += blockState.drawOffset().x;
vertices[v].coord3d[1] += blockState.drawOffset().y;
vertices[v].coord3d[2] += blockState.drawOffset().z;
vertices[v].coord3d[3] = f;
vertices[v].normal[0] = (float)normal.x;
vertices[v].normal[1] = (float)normal.y;
vertices[v].normal[2] = (float)normal.z;
const gk::Color colorMultiplier = blockState.colorMultiplier();
vertices[v].color[0] = colorMultiplier.r;
vertices[v].color[1] = colorMultiplier.g;
vertices[v].color[2] = colorMultiplier.b;
vertices[v].color[3] = colorMultiplier.a;
float U = (v == 0 || v == 3) ? U0 : U1;
float V = (v >= 2) ? V0 : V1;
vertices[v].texCoord[0] = gk::qlerpf(blockTexCoords.x, blockTexCoords.x + blockTexCoords.sizeX, U);
vertices[v].texCoord[1] = gk::qlerpf(blockTexCoords.y, blockTexCoords.y + blockTexCoords.sizeY, V);
if (Config::isSmoothLightingEnabled)
vertices[v].lightValue[0] = getLightForVertex(LightType::Sun, x, y, z, *neighbourOfs[v], normal, job.chunkData);
else if (blockState.isOpaque())
vertices[v].lightValue[0] = job.chunkData.getSunlight(sx, sy, sz);
else
vertices[v].lightValue[0] = job.chunkData.getSunlight(x, y, z);
if (Config::isSmoothLightingEnabled && !blockState.isLightSource())
vertices[v].lightValue[1] = getLightForVertex(LightType::Torch, x, y, z, *neighbourOfs[v], normal, job.chunkData);
else if (blockState.isOpaque())
vertices[v].lightValue[1] = job.chunkData.getTorchlight(sx, sy, sz);
else
vertices[v].lightValue[1] = job.chunkData.getTorchlight(x, y, z);
vertices[v].ambientOcclusion = getAmbientOcclusion(x, y, z, *neighbourOfs[v], normal, job.chunkData);
}
auto addVertex = [&](u8 v) {
if (Config::ambientOcclusion != 1 || blockState.isLightSource())
vertices[v].ambientOcclusion = 4;
if (blockState.drawType() == BlockDrawType::Liquid)
job.vertices[ChunkMeshLayer::Liquid].emplace_back(vertices[v]);
else if (blockState.drawType() == BlockDrawType::Glass)
job.vertices[ChunkMeshLayer::Glass].emplace_back(vertices[v]);
else if (blockState.colorMultiplier() != gk::Color::White)
job.vertices[ChunkMeshLayer::NoMipMap].emplace_back(vertices[v]);
else
job.vertices[ChunkMeshLayer::Solid].emplace_back(vertices[v]);
};
// Flipping quad to fix anisotropy issue
if (vertices[0].ambientOcclusion + vertices[2].ambientOcclusion >
vertices[1].ambientOcclusion + vertices[3].ambientOcclusion) {
addVertex(0);
addVertex(1);
addVertex(2);
addVertex(2);
addVertex(3);
addVertex(0);
} else {
addVertex(0);
addVertex(1);
addVertex(3);
addVertex(3);
addVertex(1);
addVertex(2);
}
job.totalVertexCount += 6;
}

View File

@ -0,0 +1,43 @@
/*
* =====================================================================================
*
* OpenMiner
*
* Copyright (C) 2018-2020 Unarelith, Quentin Bazin <openminer@unarelith.net>
* Copyright (C) 2019-2020 the OpenMiner contributors (see CONTRIBUTORS.md)
*
* This file is part of OpenMiner.
*
* OpenMiner is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* OpenMiner is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with OpenMiner; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* =====================================================================================
*/
#ifndef BLOCKMESHER_HPP_
#define BLOCKMESHER_HPP_
#include "ChunkMeshBuildingJob.hpp"
class BlockMesher {
public:
static void addCube(s8f x, s8f y, s8f z, ChunkMeshBuildingJob &job,
const BlockState &blockState, u16 blockParam);
static void addCubeFace(s8f x, s8f y, s8f z, s8f f, ChunkMeshBuildingJob &job,
const BlockState &blockState,
const gk::Vector3<s8f> &normal, const glm::vec3 *const vertexPos[4],
const gk::Vector3<s8f> *const neighbourOfs[4]);
};
#endif // BLOCKMESHER_HPP_

View File

@ -0,0 +1,102 @@
/*
* =====================================================================================
*
* OpenMiner
*
* Copyright (C) 2018-2020 Unarelith, Quentin Bazin <openminer@unarelith.net>
* Copyright (C) 2019-2020 the OpenMiner contributors (see CONTRIBUTORS.md)
*
* This file is part of OpenMiner.
*
* OpenMiner is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* OpenMiner is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with OpenMiner; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* =====================================================================================
*/
#ifndef CHUNKMESHBUILDINGJOB_HPP_
#define CHUNKMESHBUILDINGJOB_HPP_
#include "Chunk.hpp"
#include "ChunkMeshLayer.hpp"
#include "Registry.hpp"
#include "TextureAtlas.hpp"
#include "Vertex.hpp"
struct ChunkData {
s32 x, y, z;
u32 data[CHUNK_HEIGHT + 2][CHUNK_DEPTH + 2][CHUNK_WIDTH + 2];
std::optional<u8> lightData[CHUNK_HEIGHT + 2][CHUNK_DEPTH + 2][CHUNK_WIDTH + 2];
void loadFromChunk(const Chunk &chunk) {
x = chunk.x();
y = chunk.y();
z = chunk.z();
for (s8f z = -1 ; z <= CHUNK_HEIGHT ; ++z) {
for (s8f y = -1 ; y <= CHUNK_DEPTH ; ++y) {
for (s8f x = -1 ; x <= CHUNK_WIDTH ; ++x) {
data[z + 1][y + 1][x + 1] = chunk.getFullBlock(x, y, z);
lightData[z + 1][y + 1][x + 1] = chunk.lightmap().tryGetLightData(x, y, z);
}
}
}
}
u16 getBlockID(s8f x, s8f y, s8f z) const {
return u16(data[z + 1][y + 1][x + 1] & 0xffff);
}
u16 getBlockParam(s8f x, s8f y, s8f z) const {
return u16((data[z + 1][y + 1][x + 1] >> 16) & 0xffff);
}
s8 getTorchlight(s8f x, s8f y, s8f z) const {
auto light = lightData[z + 1][y + 1][x + 1];
return light ? light.value() & 0xf : -1;
}
s8 getSunlight(s8f x, s8f y, s8f z) const {
auto light = lightData[z + 1][y + 1][x + 1];
return light ? (light.value() >> 4) & 0xf : -1;
}
const BlockState *getBlockState(s8f x, s8f y, s8f z) const {
if (!lightData[z + 1][y + 1][x + 1]) return nullptr;
u16 blockID = getBlockID(x, y, z);
u16 blockParam = getBlockParam(x, y, z);
return &getBlockState(blockID, blockParam);
}
static const BlockState &getBlockState(u16 blockID, u16 blockParam) {
const Block &block = Registry::getInstance().getBlock(blockID);
return block.getState(block.param().hasParam(BlockParam::State) ?
block.param().getParam(BlockParam::State, blockParam) : 0);
}
};
struct ChunkMeshBuildingJob {
using VerticesArray = std::array<std::vector<Vertex>, ChunkMeshLayer::Count>;
ChunkData chunkData;
VerticesArray vertices;
const TextureAtlas *textureAtlas;
u64 totalVertexCount = 0;
};
#endif // CHUNKMESHBUILDINGJOB_HPP_

View File

@ -0,0 +1,114 @@
/*
* =====================================================================================
*
* OpenMiner
*
* Copyright (C) 2018-2020 Unarelith, Quentin Bazin <openminer@unarelith.net>
* Copyright (C) 2019-2020 the OpenMiner contributors (see CONTRIBUTORS.md)
*
* This file is part of OpenMiner.
*
* OpenMiner is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* OpenMiner is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with OpenMiner; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* =====================================================================================
*/
#include "Config.hpp"
#include "LightUtils.hpp"
// Based on this article: https://0fps.net/2013/07/03/ambient-occlusion-for-minecraft-like-worlds/
u8 LightUtils::getAmbientOcclusion(s8f x, s8f y, s8f z,
const gk::Vector3<s8f> &offset,
const gk::Vector3<s8f> &normal,
const ChunkData &chunk)
{
gk::Vector3<s8f> minOffset{
s8f((normal.x != 0) ? offset.x : 0),
s8f((normal.y != 0) ? offset.y : 0),
s8f((normal.z != 0) ? offset.z : 0)
};
const BlockState *blocks[4] = {
chunk.getBlockState(x + minOffset.x, y + minOffset.y, z + offset.z),
chunk.getBlockState(x + offset.x, y + minOffset.y, z + minOffset.z),
chunk.getBlockState(x + minOffset.x, y + offset.y, z + minOffset.z),
chunk.getBlockState(x + offset.x, y + offset.y, z + offset.z)
};
bool blockPresence[4] = {
blocks[0] && blocks[0]->block().id() != 0 && blocks[0]->isOpaque(),
blocks[1] && blocks[1]->block().id() != 0 && blocks[1]->isOpaque(),
blocks[2] && blocks[2]->block().id() != 0 && blocks[2]->isOpaque(),
blocks[3] && blocks[3]->block().id() != 0 && blocks[3]->isOpaque()
};
bool side1 = blockPresence[(minOffset.x != 0) ? 2 : 1];
bool side2 = blockPresence[(minOffset.z != 0) ? 2 : 0];
bool corner = blockPresence[3];
return u8((side1 && side2) ? 0 : 3 - (side1 + side2 + corner));
}
u8 LightUtils::getLightForVertex(LightType lightType, s8f x, s8f y, s8f z,
const gk::Vector3<s8f> &offset,
const gk::Vector3<s8f> &normal,
const ChunkData &chunk)
{
gk::Vector3<s8f> minOffset{
(normal.x != 0) ? offset.x : s8f(0),
(normal.y != 0) ? offset.y : s8f(0),
(normal.z != 0) ? offset.z : s8f(0)
};
gk::Vector3<s8f> surroundingBlocks[4]{
{s8f(x + minOffset.x), s8f(y + minOffset.y), s8f(z + offset.z)},
{s8f(x + offset.x), s8f(y + minOffset.y), s8f(z + minOffset.z)},
{s8f(x + minOffset.x), s8f(y + offset.y), s8f(z + minOffset.z)},
{s8f(x + offset.x), s8f(y + offset.y), s8f(z + offset.z)}
};
auto getLight = [&](const ChunkData &chunk, s8f x, s8f y, s8f z) -> s8 {
return (lightType == LightType::Sun)
? chunk.getSunlight(x, y, z)
: chunk.getTorchlight(x, y, z);
};
// Get light values for surrounding blocks
s8 lightValues[4] = {
getLight(chunk, surroundingBlocks[0].x, surroundingBlocks[0].y, surroundingBlocks[0].z),
getLight(chunk, surroundingBlocks[1].x, surroundingBlocks[1].y, surroundingBlocks[1].z),
getLight(chunk, surroundingBlocks[2].x, surroundingBlocks[2].y, surroundingBlocks[2].z),
getLight(chunk, surroundingBlocks[3].x, surroundingBlocks[3].y, surroundingBlocks[3].z),
};
u8 count = 0, total = 0;
for (u8 i = 0 ; i < 4 ; ++i) {
// Fix light approximation
if (i == 3 && lightValues[i] > lightValues[0] && !lightValues[1] && !lightValues[2])
continue;
// If the chunk is initialized, add the light value to the total
// But only add dark blocks if AO is set on Smooth Lighting
if (lightValues[i] != -1 && (Config::ambientOcclusion == 2 || lightValues[i] != 0)) {
total += (u8)lightValues[i];
++count;
}
}
if (count)
return u8(total / count);
else
return 0;
}

View File

@ -0,0 +1,46 @@
/*
* =====================================================================================
*
* OpenMiner
*
* Copyright (C) 2018-2020 Unarelith, Quentin Bazin <openminer@unarelith.net>
* Copyright (C) 2019-2020 the OpenMiner contributors (see CONTRIBUTORS.md)
*
* This file is part of OpenMiner.
*
* OpenMiner is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* OpenMiner is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with OpenMiner; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* =====================================================================================
*/
#ifndef LIGHTUTILS_HPP_
#define LIGHTUTILS_HPP_
#include "BlockMesher.hpp"
namespace LightUtils {
enum LightType {
Sun,
Torch
};
u8 getAmbientOcclusion(s8f x, s8f y, s8f z, const gk::Vector3<s8f> &offset,
const gk::Vector3<s8f> &normal, const ChunkData &chunk);
u8 getLightForVertex(LightType lightType, s8f x, s8f y, s8f z,
const gk::Vector3<s8f> &offset,
const gk::Vector3<s8f> &normal, const ChunkData &chunk);
};
#endif // LIGHTUTILS_HPP_

View File

@ -0,0 +1,101 @@
/*
* =====================================================================================
*
* OpenMiner
*
* Copyright (C) 2018-2020 Unarelith, Quentin Bazin <openminer@unarelith.net>
* Copyright (C) 2019-2020 the OpenMiner contributors (see CONTRIBUTORS.md)
*
* This file is part of OpenMiner.
*
* OpenMiner is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* OpenMiner is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with OpenMiner; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* =====================================================================================
*/
#include "BlockGeometry.hpp"
#include "ChunkMeshBuildingJob.hpp"
#include "XShapeMesher.hpp"
using namespace BlockGeometry;
void XShapeMesher::addCross(s8f x, s8f y, s8f z, ChunkMeshBuildingJob &job,
const BlockState &blockState)
{
glm::vec3 vertexPos[nVertsPerCube]{
{0, 0, 0},
{1, 0, 0},
{0, 1, 0},
{1, 1, 0},
{0, 0, 1},
{1, 0, 1},
{0, 1, 1},
{1, 1, 1},
};
const glm::vec3 *const faceVertices[nCrossFaces][nVertsPerFace]{
{&vertexPos[crossVerts[0][0]], &vertexPos[crossVerts[0][1]],
&vertexPos[crossVerts[0][2]], &vertexPos[crossVerts[0][3]]},
{&vertexPos[crossVerts[1][0]], &vertexPos[crossVerts[1][1]],
&vertexPos[crossVerts[1][2]], &vertexPos[crossVerts[1][3]]},
};
const std::string &texture = blockState.tiles().getTextureForFace(0);
const gk::FloatRect &blockTexCoords = job.textureAtlas->getTexCoords(texture);
float faceTexCoords[nVertsPerFace][nCoordsPerUV] = {
{blockTexCoords.x, blockTexCoords.y + blockTexCoords.sizeY},
{blockTexCoords.x + blockTexCoords.sizeX, blockTexCoords.y + blockTexCoords.sizeY},
{blockTexCoords.x + blockTexCoords.sizeX, blockTexCoords.y},
{blockTexCoords.x, blockTexCoords.y},
};
for (int f = 0; f < nCrossFaces ; ++f) {
Vertex vertices[nVertsPerFace];
for (int v = 0 ; v < nVertsPerFace ; ++v) {
vertices[v].coord3d[0] = x + faceVertices[f][v]->x + blockState.drawOffset().x;
vertices[v].coord3d[1] = y + faceVertices[f][v]->y + blockState.drawOffset().y;
vertices[v].coord3d[2] = z + faceVertices[f][v]->z + blockState.drawOffset().z;
vertices[v].coord3d[3] = 6;
vertices[v].normal[0] = 0;
vertices[v].normal[1] = 0;
vertices[v].normal[2] = 0;
const gk::Color colorMultiplier = blockState.colorMultiplier();
vertices[v].color[0] = colorMultiplier.r;
vertices[v].color[1] = colorMultiplier.g;
vertices[v].color[2] = colorMultiplier.b;
vertices[v].color[3] = colorMultiplier.a;
vertices[v].texCoord[0] = faceTexCoords[v][0];
vertices[v].texCoord[1] = faceTexCoords[v][1];
vertices[v].lightValue[0] = job.chunkData.getSunlight(x, y, z);
vertices[v].lightValue[1] = job.chunkData.getTorchlight(x, y, z);
vertices[v].ambientOcclusion = 4;
}
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[0]);
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[1]);
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[3]);
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[3]);
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[1]);
job.vertices[ChunkMeshLayer::Flora].emplace_back(vertices[2]);
job.totalVertexCount += 6;
}
}

View File

@ -0,0 +1,41 @@
/*
* =====================================================================================
*
* OpenMiner
*
* Copyright (C) 2018-2020 Unarelith, Quentin Bazin <openminer@unarelith.net>
* Copyright (C) 2019-2020 the OpenMiner contributors (see CONTRIBUTORS.md)
*
* This file is part of OpenMiner.
*
* OpenMiner is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* OpenMiner is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with OpenMiner; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* =====================================================================================
*/
#ifndef XSHAPEMESHER_HPP_
#define XSHAPEMESHER_HPP_
#include <gk/core/IntTypes.hpp>
class ChunkMeshBuildingJob;
class BlockState;
class XShapeMesher {
public:
static void addCross(s8f x, s8f y, s8f z, ChunkMeshBuildingJob &job,
const BlockState &blockState);
};
#endif // XSHAPEMESHER_HPP_