zig/std/event.zig

526 lines
20 KiB
Zig

const std = @import("index.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const event = this;
const mem = std.mem;
const posix = std.os.posix;
const AtomicRmwOp = builtin.AtomicRmwOp;
const AtomicOrder = builtin.AtomicOrder;
pub const TcpServer = struct {
handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void,
loop: *Loop,
sockfd: i32,
accept_coro: ?promise,
listen_address: std.net.Address,
waiting_for_emfile_node: PromiseNode,
const PromiseNode = std.LinkedList(promise).Node;
pub fn init(loop: *Loop) !TcpServer {
const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp);
errdefer std.os.close(sockfd);
// TODO can't initialize handler coroutine here because we need well defined copy elision
return TcpServer{
.loop = loop,
.sockfd = sockfd,
.accept_coro = null,
.handleRequestFn = undefined,
.waiting_for_emfile_node = undefined,
.listen_address = undefined,
};
}
pub fn listen(self: *TcpServer, address: *const std.net.Address, handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void) !void {
self.handleRequestFn = handleRequestFn;
try std.os.posixBind(self.sockfd, &address.os_addr);
try std.os.posixListen(self.sockfd, posix.SOMAXCONN);
self.listen_address = std.net.Address.initPosix(try std.os.posixGetSockName(self.sockfd));
self.accept_coro = try async<self.loop.allocator> TcpServer.handler(self);
errdefer cancel self.accept_coro.?;
try self.loop.addFd(self.sockfd, self.accept_coro.?);
errdefer self.loop.removeFd(self.sockfd);
}
pub fn deinit(self: *TcpServer) void {
self.loop.removeFd(self.sockfd);
if (self.accept_coro) |accept_coro| cancel accept_coro;
std.os.close(self.sockfd);
}
pub async fn handler(self: *TcpServer) void {
while (true) {
var accepted_addr: std.net.Address = undefined;
if (std.os.posixAccept(self.sockfd, &accepted_addr.os_addr, posix.SOCK_NONBLOCK | posix.SOCK_CLOEXEC)) |accepted_fd| {
var socket = std.os.File.openHandle(accepted_fd);
_ = async<self.loop.allocator> self.handleRequestFn(self, accepted_addr, socket) catch |err| switch (err) {
error.OutOfMemory => {
socket.close();
continue;
},
};
} else |err| switch (err) {
error.WouldBlock => {
suspend; // we will get resumed by epoll_wait in the event loop
continue;
},
error.ProcessFdQuotaExceeded => {
errdefer std.os.emfile_promise_queue.remove(&self.waiting_for_emfile_node);
suspend |p| {
self.waiting_for_emfile_node = PromiseNode.init(p);
std.os.emfile_promise_queue.append(&self.waiting_for_emfile_node);
}
continue;
},
error.ConnectionAborted, error.FileDescriptorClosed => continue,
error.PageFault => unreachable,
error.InvalidSyscall => unreachable,
error.FileDescriptorNotASocket => unreachable,
error.OperationNotSupported => unreachable,
error.SystemFdQuotaExceeded, error.SystemResources, error.ProtocolFailure, error.BlockedByFirewall, error.Unexpected => {
@panic("TODO handle this error");
},
}
}
}
};
pub const Loop = struct {
allocator: *mem.Allocator,
keep_running: bool,
next_tick_queue: std.atomic.QueueMpsc(promise),
os_data: OsData,
const OsData = switch (builtin.os) {
builtin.Os.linux => struct {
epollfd: i32,
},
else => struct {},
};
pub const NextTickNode = std.atomic.QueueMpsc(promise).Node;
/// The allocator must be thread-safe because we use it for multiplexing
/// coroutines onto kernel threads.
pub fn init(allocator: *mem.Allocator) !Loop {
var self = Loop{
.keep_running = true,
.allocator = allocator,
.os_data = undefined,
.next_tick_queue = std.atomic.QueueMpsc(promise).init(),
};
try self.initOsData();
errdefer self.deinitOsData();
return self;
}
/// must call stop before deinit
pub fn deinit(self: *Loop) void {
self.deinitOsData();
}
const InitOsDataError = std.os.LinuxEpollCreateError;
fn initOsData(self: *Loop) InitOsDataError!void {
switch (builtin.os) {
builtin.Os.linux => {
self.os_data.epollfd = try std.os.linuxEpollCreate(std.os.linux.EPOLL_CLOEXEC);
errdefer std.os.close(self.os_data.epollfd);
},
else => {},
}
}
fn deinitOsData(self: *Loop) void {
switch (builtin.os) {
builtin.Os.linux => std.os.close(self.os_data.epollfd),
else => {},
}
}
pub fn addFd(self: *Loop, fd: i32, prom: promise) !void {
var ev = std.os.linux.epoll_event{
.events = std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET,
.data = std.os.linux.epoll_data{ .ptr = @ptrToInt(prom) },
};
try std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_ADD, fd, &ev);
}
pub fn removeFd(self: *Loop, fd: i32) void {
std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_DEL, fd, undefined) catch {};
}
async fn waitFd(self: *Loop, fd: i32) !void {
defer self.removeFd(fd);
suspend |p| {
try self.addFd(fd, p);
}
}
pub fn stop(self: *Loop) void {
// TODO make atomic
self.keep_running = false;
// TODO activate an fd in the epoll set which should cancel all the promises
}
/// bring your own linked list node. this means it can't fail.
pub fn onNextTick(self: *Loop, node: *NextTickNode) void {
self.next_tick_queue.put(node);
}
pub fn run(self: *Loop) void {
while (self.keep_running) {
// TODO multiplex the next tick queue and the epoll event results onto a thread pool
while (self.next_tick_queue.get()) |node| {
resume node.data;
}
if (!self.keep_running) break;
self.dispatchOsEvents();
}
}
fn dispatchOsEvents(self: *Loop) void {
switch (builtin.os) {
builtin.Os.linux => {
var events: [16]std.os.linux.epoll_event = undefined;
const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1);
for (events[0..count]) |ev| {
const p = @intToPtr(promise, ev.data.ptr);
resume p;
}
},
else => {},
}
}
};
/// many producer, many consumer, thread-safe, lock-free, runtime configurable buffer size
/// when buffer is empty, consumers suspend and are resumed by producers
/// when buffer is full, producers suspend and are resumed by consumers
pub fn Channel(comptime T: type) type {
return struct {
loop: *Loop,
getters: std.atomic.QueueMpsc(GetNode),
putters: std.atomic.QueueMpsc(PutNode),
get_count: usize,
put_count: usize,
dispatch_lock: u8, // TODO make this a bool
need_dispatch: u8, // TODO make this a bool
// simple fixed size ring buffer
buffer_nodes: []T,
buffer_index: usize,
buffer_len: usize,
const SelfChannel = this;
const GetNode = struct {
ptr: *T,
tick_node: *Loop.NextTickNode,
};
const PutNode = struct {
data: T,
tick_node: *Loop.NextTickNode,
};
/// call destroy when done
pub fn create(loop: *Loop, capacity: usize) !*SelfChannel {
const buffer_nodes = try loop.allocator.alloc(T, capacity);
errdefer loop.allocator.free(buffer_nodes);
const self = try loop.allocator.create(SelfChannel{
.loop = loop,
.buffer_len = 0,
.buffer_nodes = buffer_nodes,
.buffer_index = 0,
.dispatch_lock = 0,
.need_dispatch = 0,
.getters = std.atomic.QueueMpsc(GetNode).init(),
.putters = std.atomic.QueueMpsc(PutNode).init(),
.get_count = 0,
.put_count = 0,
});
errdefer loop.allocator.destroy(self);
return self;
}
/// must be called when all calls to put and get have suspended and no more calls occur
pub fn destroy(self: *SelfChannel) void {
while (self.getters.get()) |get_node| {
cancel get_node.data.tick_node.data;
}
while (self.putters.get()) |put_node| {
cancel put_node.data.tick_node.data;
}
self.loop.allocator.free(self.buffer_nodes);
self.loop.allocator.destroy(self);
}
/// puts a data item in the channel. The promise completes when the value has been added to the
/// buffer, or in the case of a zero size buffer, when the item has been retrieved by a getter.
pub async fn put(self: *SelfChannel, data: T) void {
// TODO should be able to group memory allocation failure before first suspend point
// so that the async invocation catches it
var dispatch_tick_node_ptr: *Loop.NextTickNode = undefined;
_ = async self.dispatch(&dispatch_tick_node_ptr) catch unreachable;
suspend |handle| {
var my_tick_node = Loop.NextTickNode{
.next = undefined,
.data = handle,
};
var queue_node = std.atomic.QueueMpsc(PutNode).Node{
.data = PutNode{
.tick_node = &my_tick_node,
.data = data,
},
.next = undefined,
};
self.putters.put(&queue_node);
_ = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
self.loop.onNextTick(dispatch_tick_node_ptr);
}
}
/// await this function to get an item from the channel. If the buffer is empty, the promise will
/// complete when the next item is put in the channel.
pub async fn get(self: *SelfChannel) T {
// TODO should be able to group memory allocation failure before first suspend point
// so that the async invocation catches it
var dispatch_tick_node_ptr: *Loop.NextTickNode = undefined;
_ = async self.dispatch(&dispatch_tick_node_ptr) catch unreachable;
// TODO integrate this function with named return values
// so we can get rid of this extra result copy
var result: T = undefined;
var debug_handle: usize = undefined;
suspend |handle| {
debug_handle = @ptrToInt(handle);
var my_tick_node = Loop.NextTickNode{
.next = undefined,
.data = handle,
};
var queue_node = std.atomic.QueueMpsc(GetNode).Node{
.data = GetNode{
.ptr = &result,
.tick_node = &my_tick_node,
},
.next = undefined,
};
self.getters.put(&queue_node);
_ = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
self.loop.onNextTick(dispatch_tick_node_ptr);
}
return result;
}
async fn dispatch(self: *SelfChannel, tick_node_ptr: **Loop.NextTickNode) void {
// resumed by onNextTick
suspend |handle| {
var tick_node = Loop.NextTickNode{
.data = handle,
.next = undefined,
};
tick_node_ptr.* = &tick_node;
}
// set the "need dispatch" flag
_ = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
lock: while (true) {
// set the lock flag
const prev_lock = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst);
if (prev_lock != 0) return;
// clear the need_dispatch flag since we're about to do it
_ = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
while (true) {
one_dispatch: {
// later we correct these extra subtractions
var get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
var put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
// transfer self.buffer to self.getters
while (self.buffer_len != 0) {
if (get_count == 0) break :one_dispatch;
const get_node = &self.getters.get().?.data;
get_node.ptr.* = self.buffer_nodes[self.buffer_index -% self.buffer_len];
self.loop.onNextTick(get_node.tick_node);
self.buffer_len -= 1;
get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
// direct transfer self.putters to self.getters
while (get_count != 0 and put_count != 0) {
const get_node = &self.getters.get().?.data;
const put_node = &self.putters.get().?.data;
get_node.ptr.* = put_node.data;
self.loop.onNextTick(get_node.tick_node);
self.loop.onNextTick(put_node.tick_node);
get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
// transfer self.putters to self.buffer
while (self.buffer_len != self.buffer_nodes.len and put_count != 0) {
const put_node = &self.putters.get().?.data;
self.buffer_nodes[self.buffer_index] = put_node.data;
self.loop.onNextTick(put_node.tick_node);
self.buffer_index +%= 1;
self.buffer_len += 1;
put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
}
// undo the extra subtractions
_ = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
_ = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst);
// clear need-dispatch flag
const need_dispatch = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
if (need_dispatch != 0) continue;
const my_lock = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
assert(my_lock != 0);
// we have to check again now that we unlocked
if (@atomicLoad(u8, &self.need_dispatch, AtomicOrder.SeqCst) != 0) continue :lock;
return;
}
}
}
};
}
pub async fn connect(loop: *Loop, _address: *const std.net.Address) !std.os.File {
var address = _address.*; // TODO https://github.com/ziglang/zig/issues/733
const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp);
errdefer std.os.close(sockfd);
try std.os.posixConnectAsync(sockfd, &address.os_addr);
try await try async loop.waitFd(sockfd);
try std.os.posixGetSockOptConnectError(sockfd);
return std.os.File.openHandle(sockfd);
}
test "listen on a port, send bytes, receive bytes" {
if (builtin.os != builtin.Os.linux) {
// TODO build abstractions for other operating systems
return;
}
const MyServer = struct {
tcp_server: TcpServer,
const Self = this;
async<*mem.Allocator> fn handler(tcp_server: *TcpServer, _addr: *const std.net.Address, _socket: *const std.os.File) void {
const self = @fieldParentPtr(Self, "tcp_server", tcp_server);
var socket = _socket.*; // TODO https://github.com/ziglang/zig/issues/733
defer socket.close();
const next_handler = async errorableHandler(self, _addr, socket) catch |err| switch (err) {
error.OutOfMemory => @panic("unable to handle connection: out of memory"),
};
(await next_handler) catch |err| {
std.debug.panic("unable to handle connection: {}\n", err);
};
suspend |p| {
cancel p;
}
}
async fn errorableHandler(self: *Self, _addr: *const std.net.Address, _socket: *const std.os.File) !void {
const addr = _addr.*; // TODO https://github.com/ziglang/zig/issues/733
var socket = _socket.*; // TODO https://github.com/ziglang/zig/issues/733
var adapter = std.io.FileOutStream.init(&socket);
var stream = &adapter.stream;
try stream.print("hello from server\n");
}
};
const ip4addr = std.net.parseIp4("127.0.0.1") catch unreachable;
const addr = std.net.Address.initIp4(ip4addr, 0);
var loop = try Loop.init(std.debug.global_allocator);
var server = MyServer{ .tcp_server = try TcpServer.init(&loop) };
defer server.tcp_server.deinit();
try server.tcp_server.listen(addr, MyServer.handler);
const p = try async<std.debug.global_allocator> doAsyncTest(&loop, server.tcp_server.listen_address);
defer cancel p;
loop.run();
}
async fn doAsyncTest(loop: *Loop, address: *const std.net.Address) void {
errdefer @panic("test failure");
var socket_file = try await try async event.connect(loop, address);
defer socket_file.close();
var buf: [512]u8 = undefined;
const amt_read = try socket_file.read(buf[0..]);
const msg = buf[0..amt_read];
assert(mem.eql(u8, msg, "hello from server\n"));
loop.stop();
}
test "std.event.Channel" {
var da = std.heap.DirectAllocator.init();
defer da.deinit();
const allocator = &da.allocator;
var loop = try Loop.init(allocator);
defer loop.deinit();
const channel = try Channel(i32).create(&loop, 0);
defer channel.destroy();
const handle = try async<allocator> testChannelGetter(&loop, channel);
defer cancel handle;
const putter = try async<allocator> testChannelPutter(channel);
defer cancel putter;
loop.run();
}
async fn testChannelGetter(loop: *Loop, channel: *Channel(i32)) void {
errdefer @panic("test failed");
const value1_promise = try async channel.get();
const value1 = await value1_promise;
assert(value1 == 1234);
const value2_promise = try async channel.get();
const value2 = await value2_promise;
assert(value2 == 4567);
loop.stop();
}
async fn testChannelPutter(channel: *Channel(i32)) void {
await (async channel.put(1234) catch @panic("out of memory"));
await (async channel.put(4567) catch @panic("out of memory"));
}