const std = @import("index.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const event = this; const mem = std.mem; const posix = std.os.posix; const AtomicRmwOp = builtin.AtomicRmwOp; const AtomicOrder = builtin.AtomicOrder; pub const TcpServer = struct { handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void, loop: *Loop, sockfd: i32, accept_coro: ?promise, listen_address: std.net.Address, waiting_for_emfile_node: PromiseNode, const PromiseNode = std.LinkedList(promise).Node; pub fn init(loop: *Loop) !TcpServer { const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp); errdefer std.os.close(sockfd); // TODO can't initialize handler coroutine here because we need well defined copy elision return TcpServer{ .loop = loop, .sockfd = sockfd, .accept_coro = null, .handleRequestFn = undefined, .waiting_for_emfile_node = undefined, .listen_address = undefined, }; } pub fn listen(self: *TcpServer, address: *const std.net.Address, handleRequestFn: async<*mem.Allocator> fn (*TcpServer, *const std.net.Address, *const std.os.File) void) !void { self.handleRequestFn = handleRequestFn; try std.os.posixBind(self.sockfd, &address.os_addr); try std.os.posixListen(self.sockfd, posix.SOMAXCONN); self.listen_address = std.net.Address.initPosix(try std.os.posixGetSockName(self.sockfd)); self.accept_coro = try async TcpServer.handler(self); errdefer cancel self.accept_coro.?; try self.loop.addFd(self.sockfd, self.accept_coro.?); errdefer self.loop.removeFd(self.sockfd); } pub fn deinit(self: *TcpServer) void { self.loop.removeFd(self.sockfd); if (self.accept_coro) |accept_coro| cancel accept_coro; std.os.close(self.sockfd); } pub async fn handler(self: *TcpServer) void { while (true) { var accepted_addr: std.net.Address = undefined; if (std.os.posixAccept(self.sockfd, &accepted_addr.os_addr, posix.SOCK_NONBLOCK | posix.SOCK_CLOEXEC)) |accepted_fd| { var socket = std.os.File.openHandle(accepted_fd); _ = async self.handleRequestFn(self, accepted_addr, socket) catch |err| switch (err) { error.OutOfMemory => { socket.close(); continue; }, }; } else |err| switch (err) { error.WouldBlock => { suspend; // we will get resumed by epoll_wait in the event loop continue; }, error.ProcessFdQuotaExceeded => { errdefer std.os.emfile_promise_queue.remove(&self.waiting_for_emfile_node); suspend |p| { self.waiting_for_emfile_node = PromiseNode.init(p); std.os.emfile_promise_queue.append(&self.waiting_for_emfile_node); } continue; }, error.ConnectionAborted, error.FileDescriptorClosed => continue, error.PageFault => unreachable, error.InvalidSyscall => unreachable, error.FileDescriptorNotASocket => unreachable, error.OperationNotSupported => unreachable, error.SystemFdQuotaExceeded, error.SystemResources, error.ProtocolFailure, error.BlockedByFirewall, error.Unexpected => { @panic("TODO handle this error"); }, } } } }; pub const Loop = struct { allocator: *mem.Allocator, keep_running: bool, next_tick_queue: std.atomic.QueueMpsc(promise), os_data: OsData, const OsData = switch (builtin.os) { builtin.Os.linux => struct { epollfd: i32, }, else => struct {}, }; pub const NextTickNode = std.atomic.QueueMpsc(promise).Node; /// The allocator must be thread-safe because we use it for multiplexing /// coroutines onto kernel threads. pub fn init(allocator: *mem.Allocator) !Loop { var self = Loop{ .keep_running = true, .allocator = allocator, .os_data = undefined, .next_tick_queue = std.atomic.QueueMpsc(promise).init(), }; try self.initOsData(); errdefer self.deinitOsData(); return self; } /// must call stop before deinit pub fn deinit(self: *Loop) void { self.deinitOsData(); } const InitOsDataError = std.os.LinuxEpollCreateError; fn initOsData(self: *Loop) InitOsDataError!void { switch (builtin.os) { builtin.Os.linux => { self.os_data.epollfd = try std.os.linuxEpollCreate(std.os.linux.EPOLL_CLOEXEC); errdefer std.os.close(self.os_data.epollfd); }, else => {}, } } fn deinitOsData(self: *Loop) void { switch (builtin.os) { builtin.Os.linux => std.os.close(self.os_data.epollfd), else => {}, } } pub fn addFd(self: *Loop, fd: i32, prom: promise) !void { var ev = std.os.linux.epoll_event{ .events = std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET, .data = std.os.linux.epoll_data{ .ptr = @ptrToInt(prom) }, }; try std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_ADD, fd, &ev); } pub fn removeFd(self: *Loop, fd: i32) void { std.os.linuxEpollCtl(self.os_data.epollfd, std.os.linux.EPOLL_CTL_DEL, fd, undefined) catch {}; } async fn waitFd(self: *Loop, fd: i32) !void { defer self.removeFd(fd); suspend |p| { try self.addFd(fd, p); } } pub fn stop(self: *Loop) void { // TODO make atomic self.keep_running = false; // TODO activate an fd in the epoll set which should cancel all the promises } /// bring your own linked list node. this means it can't fail. pub fn onNextTick(self: *Loop, node: *NextTickNode) void { self.next_tick_queue.put(node); } pub fn run(self: *Loop) void { while (self.keep_running) { // TODO multiplex the next tick queue and the epoll event results onto a thread pool while (self.next_tick_queue.get()) |node| { resume node.data; } if (!self.keep_running) break; self.dispatchOsEvents(); } } fn dispatchOsEvents(self: *Loop) void { switch (builtin.os) { builtin.Os.linux => { var events: [16]std.os.linux.epoll_event = undefined; const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1); for (events[0..count]) |ev| { const p = @intToPtr(promise, ev.data.ptr); resume p; } }, else => {}, } } }; /// many producer, many consumer, thread-safe, lock-free, runtime configurable buffer size /// when buffer is empty, consumers suspend and are resumed by producers /// when buffer is full, producers suspend and are resumed by consumers pub fn Channel(comptime T: type) type { return struct { loop: *Loop, getters: std.atomic.QueueMpsc(GetNode), putters: std.atomic.QueueMpsc(PutNode), get_count: usize, put_count: usize, dispatch_lock: u8, // TODO make this a bool need_dispatch: u8, // TODO make this a bool // simple fixed size ring buffer buffer_nodes: []T, buffer_index: usize, buffer_len: usize, const SelfChannel = this; const GetNode = struct { ptr: *T, tick_node: *Loop.NextTickNode, }; const PutNode = struct { data: T, tick_node: *Loop.NextTickNode, }; /// call destroy when done pub fn create(loop: *Loop, capacity: usize) !*SelfChannel { const buffer_nodes = try loop.allocator.alloc(T, capacity); errdefer loop.allocator.free(buffer_nodes); const self = try loop.allocator.create(SelfChannel{ .loop = loop, .buffer_len = 0, .buffer_nodes = buffer_nodes, .buffer_index = 0, .dispatch_lock = 0, .need_dispatch = 0, .getters = std.atomic.QueueMpsc(GetNode).init(), .putters = std.atomic.QueueMpsc(PutNode).init(), .get_count = 0, .put_count = 0, }); errdefer loop.allocator.destroy(self); return self; } /// must be called when all calls to put and get have suspended and no more calls occur pub fn destroy(self: *SelfChannel) void { while (self.getters.get()) |get_node| { cancel get_node.data.tick_node.data; } while (self.putters.get()) |put_node| { cancel put_node.data.tick_node.data; } self.loop.allocator.free(self.buffer_nodes); self.loop.allocator.destroy(self); } /// puts a data item in the channel. The promise completes when the value has been added to the /// buffer, or in the case of a zero size buffer, when the item has been retrieved by a getter. pub async fn put(self: *SelfChannel, data: T) void { // TODO should be able to group memory allocation failure before first suspend point // so that the async invocation catches it var dispatch_tick_node_ptr: *Loop.NextTickNode = undefined; _ = async self.dispatch(&dispatch_tick_node_ptr) catch unreachable; suspend |handle| { var my_tick_node = Loop.NextTickNode{ .next = undefined, .data = handle, }; var queue_node = std.atomic.QueueMpsc(PutNode).Node{ .data = PutNode{ .tick_node = &my_tick_node, .data = data, }, .next = undefined, }; self.putters.put(&queue_node); _ = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst); self.loop.onNextTick(dispatch_tick_node_ptr); } } /// await this function to get an item from the channel. If the buffer is empty, the promise will /// complete when the next item is put in the channel. pub async fn get(self: *SelfChannel) T { // TODO should be able to group memory allocation failure before first suspend point // so that the async invocation catches it var dispatch_tick_node_ptr: *Loop.NextTickNode = undefined; _ = async self.dispatch(&dispatch_tick_node_ptr) catch unreachable; // TODO integrate this function with named return values // so we can get rid of this extra result copy var result: T = undefined; var debug_handle: usize = undefined; suspend |handle| { debug_handle = @ptrToInt(handle); var my_tick_node = Loop.NextTickNode{ .next = undefined, .data = handle, }; var queue_node = std.atomic.QueueMpsc(GetNode).Node{ .data = GetNode{ .ptr = &result, .tick_node = &my_tick_node, }, .next = undefined, }; self.getters.put(&queue_node); _ = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst); self.loop.onNextTick(dispatch_tick_node_ptr); } return result; } async fn dispatch(self: *SelfChannel, tick_node_ptr: **Loop.NextTickNode) void { // resumed by onNextTick suspend |handle| { var tick_node = Loop.NextTickNode{ .data = handle, .next = undefined, }; tick_node_ptr.* = &tick_node; } // set the "need dispatch" flag _ = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); lock: while (true) { // set the lock flag const prev_lock = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); if (prev_lock != 0) return; // clear the need_dispatch flag since we're about to do it _ = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); while (true) { one_dispatch: { // later we correct these extra subtractions var get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); var put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); // transfer self.buffer to self.getters while (self.buffer_len != 0) { if (get_count == 0) break :one_dispatch; const get_node = &self.getters.get().?.data; get_node.ptr.* = self.buffer_nodes[self.buffer_index -% self.buffer_len]; self.loop.onNextTick(get_node.tick_node); self.buffer_len -= 1; get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); } // direct transfer self.putters to self.getters while (get_count != 0 and put_count != 0) { const get_node = &self.getters.get().?.data; const put_node = &self.putters.get().?.data; get_node.ptr.* = put_node.data; self.loop.onNextTick(get_node.tick_node); self.loop.onNextTick(put_node.tick_node); get_count = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); } // transfer self.putters to self.buffer while (self.buffer_len != self.buffer_nodes.len and put_count != 0) { const put_node = &self.putters.get().?.data; self.buffer_nodes[self.buffer_index] = put_node.data; self.loop.onNextTick(put_node.tick_node); self.buffer_index +%= 1; self.buffer_len += 1; put_count = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); } } // undo the extra subtractions _ = @atomicRmw(usize, &self.get_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst); _ = @atomicRmw(usize, &self.put_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst); // clear need-dispatch flag const need_dispatch = @atomicRmw(u8, &self.need_dispatch, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); if (need_dispatch != 0) continue; const my_lock = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst); assert(my_lock != 0); // we have to check again now that we unlocked if (@atomicLoad(u8, &self.need_dispatch, AtomicOrder.SeqCst) != 0) continue :lock; return; } } } }; } pub async fn connect(loop: *Loop, _address: *const std.net.Address) !std.os.File { var address = _address.*; // TODO https://github.com/ziglang/zig/issues/733 const sockfd = try std.os.posixSocket(posix.AF_INET, posix.SOCK_STREAM | posix.SOCK_CLOEXEC | posix.SOCK_NONBLOCK, posix.PROTO_tcp); errdefer std.os.close(sockfd); try std.os.posixConnectAsync(sockfd, &address.os_addr); try await try async loop.waitFd(sockfd); try std.os.posixGetSockOptConnectError(sockfd); return std.os.File.openHandle(sockfd); } test "listen on a port, send bytes, receive bytes" { if (builtin.os != builtin.Os.linux) { // TODO build abstractions for other operating systems return; } const MyServer = struct { tcp_server: TcpServer, const Self = this; async<*mem.Allocator> fn handler(tcp_server: *TcpServer, _addr: *const std.net.Address, _socket: *const std.os.File) void { const self = @fieldParentPtr(Self, "tcp_server", tcp_server); var socket = _socket.*; // TODO https://github.com/ziglang/zig/issues/733 defer socket.close(); const next_handler = async errorableHandler(self, _addr, socket) catch |err| switch (err) { error.OutOfMemory => @panic("unable to handle connection: out of memory"), }; (await next_handler) catch |err| { std.debug.panic("unable to handle connection: {}\n", err); }; suspend |p| { cancel p; } } async fn errorableHandler(self: *Self, _addr: *const std.net.Address, _socket: *const std.os.File) !void { const addr = _addr.*; // TODO https://github.com/ziglang/zig/issues/733 var socket = _socket.*; // TODO https://github.com/ziglang/zig/issues/733 var adapter = std.io.FileOutStream.init(&socket); var stream = &adapter.stream; try stream.print("hello from server\n"); } }; const ip4addr = std.net.parseIp4("127.0.0.1") catch unreachable; const addr = std.net.Address.initIp4(ip4addr, 0); var loop = try Loop.init(std.debug.global_allocator); var server = MyServer{ .tcp_server = try TcpServer.init(&loop) }; defer server.tcp_server.deinit(); try server.tcp_server.listen(addr, MyServer.handler); const p = try async doAsyncTest(&loop, server.tcp_server.listen_address); defer cancel p; loop.run(); } async fn doAsyncTest(loop: *Loop, address: *const std.net.Address) void { errdefer @panic("test failure"); var socket_file = try await try async event.connect(loop, address); defer socket_file.close(); var buf: [512]u8 = undefined; const amt_read = try socket_file.read(buf[0..]); const msg = buf[0..amt_read]; assert(mem.eql(u8, msg, "hello from server\n")); loop.stop(); } test "std.event.Channel" { var da = std.heap.DirectAllocator.init(); defer da.deinit(); const allocator = &da.allocator; var loop = try Loop.init(allocator); defer loop.deinit(); const channel = try Channel(i32).create(&loop, 0); defer channel.destroy(); const handle = try async testChannelGetter(&loop, channel); defer cancel handle; const putter = try async testChannelPutter(channel); defer cancel putter; loop.run(); } async fn testChannelGetter(loop: *Loop, channel: *Channel(i32)) void { errdefer @panic("test failed"); const value1_promise = try async channel.get(); const value1 = await value1_promise; assert(value1 == 1234); const value2_promise = try async channel.get(); const value2 = await value2_promise; assert(value2 == 4567); loop.stop(); } async fn testChannelPutter(channel: *Channel(i32)) void { await (async channel.put(1234) catch @panic("out of memory")); await (async channel.put(4567) catch @panic("out of memory")); }