* add std.atomic.QueueMpsc.isEmpty
* make std.debug.global_allocator thread-safe
* std.event.Loop: now you have to choose between
- initSingleThreaded
- initMultiThreaded
* std.event.Loop multiplexes coroutines onto kernel threads
* Remove std.event.Loop.stop. Instead the event loop run() function
returns once there are no pending coroutines.
* fix crash in ir.cpp for calling methods under some conditions
* small progress self-hosted compiler, analyzing top level declarations
* Introduce std.event.Lock for synchronizing coroutines
* introduce std.event.Locked(T) for data that only 1 coroutine should
modify at once.
* make the self hosted compiler use multi threaded event loop
* make std.heap.DirectAllocator thread-safe
See #174
TODO:
* call sched_getaffinity instead of hard coding thread pool size 4
* support for Windows and MacOS
* #1194
* #1197
This strategy adds another field to the SwitchBr instruction,
which is the result of the CheckSwitchProngs instruction. The
type of the result is void, and is unused, except that the SwitchBr
instruction will not perform analysis if the CheckSwitchProngs
instruction did not pass analysis. This allows the CheckSwitchProngs
instruction to do implicit casting for its type checking, while
preventing duplicate compile error messages.
previously, await on an early return would try to access the
destroyed coroutine frame; now it copies the result into a
temporary variable before destroying the coroutine frame
This is akin to channels in Go, except:
* implemented in userland
* they are lock-free and thread-safe
* they integrate with the userland event loop
The self hosted compiler is changed to use a channel for events,
and made to stay alive, watching files and performing builds when
things change, however the main.zig file exits after 1 build.
Note that nothing is actually built yet, it just parses the input
and then declares that the build succeeded.
Next items to do:
* add windows and macos support for std.event.Loop
* improve the event loop stop() operation
* make the event loop multiplex coroutines onto kernel threads
* watch source file for updates, and provide AST diffs
(at least list the top level declaration changes)
* top level declaration analysis