tests passing with kqueue on macos

master
Andrew Kelley 2018-07-08 02:43:30 -04:00
parent c15a6fa9d0
commit 50d70d5f49
4 changed files with 454 additions and 66 deletions

View File

@ -6,6 +6,13 @@ pub extern "c" fn __getdirentries64(fd: c_int, buf_ptr: [*]u8, buf_len: usize, b
pub extern "c" fn mach_absolute_time() u64;
pub extern "c" fn mach_timebase_info(tinfo: ?*mach_timebase_info_data) void;
pub extern "c" fn kqueue() c_int;
pub extern "c" fn kevent(kq: c_int, changelist: [*]const Kevent, nchanges: c_int,
eventlist: [*]Kevent, nevents: c_int, timeout: ?*const timespec) c_int;
pub extern "c" fn kevent64(kq: c_int, changelist: [*]const kevent64_s, nchanges: c_int,
eventlist: [*]kevent64_s, nevents: c_int, flags: c_uint, timeout: ?*const timespec) c_int;
pub use @import("../os/darwin_errno.zig");
pub const _errno = __error;
@ -86,3 +93,52 @@ pub const pthread_attr_t = extern struct {
__sig: c_long,
__opaque: [56]u8,
};
/// Renamed from `kevent` to `Kevent` to avoid conflict with function name.
pub const Kevent = extern struct {
ident: usize,
filter: i16,
flags: u16,
fflags: u32,
data: isize,
udata: usize,
};
// sys/types.h on macos uses #pragma pack(4) so these checks are
// to make sure the struct is laid out the same. These values were
// produced from C code using the offsetof macro.
const std = @import("../index.zig");
const assert = std.debug.assert;
comptime {
assert(@offsetOf(Kevent, "ident") == 0);
assert(@offsetOf(Kevent, "filter") == 8);
assert(@offsetOf(Kevent, "flags") == 10);
assert(@offsetOf(Kevent, "fflags") == 12);
assert(@offsetOf(Kevent, "data") == 16);
assert(@offsetOf(Kevent, "udata") == 24);
}
pub const kevent64_s = extern struct {
ident: u64,
filter: i16,
flags: u16,
fflags: u32,
data: i64,
udata: u64,
ext: [2]u64,
};
// sys/types.h on macos uses #pragma pack() so these checks are
// to make sure the struct is laid out the same. These values were
// produced from C code using the offsetof macro.
comptime {
assert(@offsetOf(kevent64_s, "ident") == 0);
assert(@offsetOf(kevent64_s, "filter") == 8);
assert(@offsetOf(kevent64_s, "flags") == 10);
assert(@offsetOf(kevent64_s, "fflags") == 12);
assert(@offsetOf(kevent64_s, "data") == 16);
assert(@offsetOf(kevent64_s, "udata") == 24);
assert(@offsetOf(kevent64_s, "ext") == 32);
}

View File

@ -118,6 +118,11 @@ pub const Loop = struct {
extra_threads: []*std.os.Thread,
final_resume_node: ResumeNode,
// pre-allocated eventfds. all permanently active.
// this is how we send promises to be resumed on other threads.
available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd),
eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node,
pub const NextTickNode = std.atomic.QueueMpsc(promise).Node;
pub const ResumeNode = struct {
@ -130,10 +135,17 @@ pub const Loop = struct {
EventFd,
};
pub const EventFd = struct {
base: ResumeNode,
epoll_op: u32,
eventfd: i32,
pub const EventFd = switch (builtin.os) {
builtin.Os.macosx => struct {
base: ResumeNode,
kevent: posix.Kevent,
},
builtin.Os.linux => struct {
base: ResumeNode,
epoll_op: u32,
eventfd: i32,
},
else => @compileError("unsupported OS"),
};
};
@ -168,36 +180,41 @@ pub const Loop = struct {
.id = ResumeNode.Id.Stop,
.handle = undefined,
},
.available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(),
.eventfd_resume_nodes = undefined,
};
try self.initOsData(thread_count);
const extra_thread_count = thread_count - 1;
self.eventfd_resume_nodes = try self.allocator.alloc(
std.atomic.Stack(ResumeNode.EventFd).Node,
extra_thread_count,
);
errdefer self.allocator.free(self.eventfd_resume_nodes);
self.extra_threads = try self.allocator.alloc(*std.os.Thread, extra_thread_count);
errdefer self.allocator.free(self.extra_threads);
try self.initOsData(extra_thread_count);
errdefer self.deinitOsData();
}
/// must call stop before deinit
pub fn deinit(self: *Loop) void {
self.deinitOsData();
self.allocator.free(self.extra_threads);
}
const InitOsDataError = std.os.LinuxEpollCreateError || mem.Allocator.Error || std.os.LinuxEventFdError ||
std.os.SpawnThreadError || std.os.LinuxEpollCtlError;
std.os.SpawnThreadError || std.os.LinuxEpollCtlError || std.os.BsdKEventError;
const wakeup_bytes = []u8{0x1} ** 8;
fn initOsData(self: *Loop, thread_count: usize) InitOsDataError!void {
fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void {
switch (builtin.os) {
builtin.Os.linux => {
const extra_thread_count = thread_count - 1;
self.os_data.available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init();
self.os_data.eventfd_resume_nodes = try self.allocator.alloc(
std.atomic.Stack(ResumeNode.EventFd).Node,
extra_thread_count,
);
errdefer self.allocator.free(self.os_data.eventfd_resume_nodes);
errdefer {
while (self.os_data.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd);
while (self.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd);
}
for (self.os_data.eventfd_resume_nodes) |*eventfd_node| {
for (self.eventfd_resume_nodes) |*eventfd_node| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
@ -209,7 +226,7 @@ pub const Loop = struct {
},
.next = undefined,
};
self.os_data.available_eventfd_resume_nodes.push(eventfd_node);
self.available_eventfd_resume_nodes.push(eventfd_node);
}
self.os_data.epollfd = try std.os.linuxEpollCreate(posix.EPOLL_CLOEXEC);
@ -228,15 +245,84 @@ pub const Loop = struct {
self.os_data.final_eventfd,
&self.os_data.final_eventfd_event,
);
self.extra_threads = try self.allocator.alloc(*std.os.Thread, extra_thread_count);
errdefer self.allocator.free(self.extra_threads);
var extra_thread_index: usize = 0;
errdefer {
// writing 8 bytes to an eventfd cannot fail
std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].wait();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try std.os.spawnThread(self, workerRun);
}
},
builtin.Os.macosx => {
self.os_data.kqfd = try std.os.bsdKQueue();
errdefer std.os.close(self.os_data.kqfd);
self.os_data.kevents = try self.allocator.alloc(posix.Kevent, extra_thread_count);
errdefer self.allocator.free(self.os_data.kevents);
const eventlist = ([*]posix.Kevent)(undefined)[0..0];
for (self.eventfd_resume_nodes) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = ResumeNode.Id.EventFd,
.handle = undefined,
},
// this one is for sending events
.kevent = posix.Kevent {
.ident = i,
.filter = posix.EVFILT_USER,
.flags = posix.EV_CLEAR|posix.EV_ADD|posix.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&eventfd_node.data.base),
},
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
const kevent_array = (*[1]posix.Kevent)(&eventfd_node.data.kevent);
_ = try std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null);
eventfd_node.data.kevent.flags = posix.EV_CLEAR|posix.EV_ENABLE;
eventfd_node.data.kevent.fflags = posix.NOTE_TRIGGER;
// this one is for waiting for events
self.os_data.kevents[i] = posix.Kevent {
.ident = i,
.filter = posix.EVFILT_USER,
.flags = 0,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&eventfd_node.data.base),
};
}
// Pre-add so that we cannot get error.SystemResources
// later when we try to activate it.
self.os_data.final_kevent = posix.Kevent{
.ident = extra_thread_count,
.filter = posix.EVFILT_USER,
.flags = posix.EV_ADD | posix.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @ptrToInt(&self.final_resume_node),
};
const kevent_array = (*[1]posix.Kevent)(&self.os_data.final_kevent);
_ = try std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null);
self.os_data.final_kevent.flags = posix.EV_ENABLE;
self.os_data.final_kevent.fflags = posix.NOTE_TRIGGER;
var extra_thread_index: usize = 0;
errdefer {
_ = std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
// writing 8 bytes to an eventfd cannot fail
std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
self.extra_threads[extra_thread_index].wait();
}
}
@ -252,10 +338,12 @@ pub const Loop = struct {
switch (builtin.os) {
builtin.Os.linux => {
std.os.close(self.os_data.final_eventfd);
while (self.os_data.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd);
while (self.available_eventfd_resume_nodes.pop()) |node| std.os.close(node.data.eventfd);
std.os.close(self.os_data.epollfd);
self.allocator.free(self.os_data.eventfd_resume_nodes);
self.allocator.free(self.extra_threads);
self.allocator.free(self.eventfd_resume_nodes);
},
builtin.Os.macosx => {
self.allocator.free(self.os_data.kevents);
},
else => {},
}
@ -332,21 +420,38 @@ pub const Loop = struct {
continue :start_over;
}
// non-last node, stick it in the epoll set so that
// non-last node, stick it in the epoll/kqueue set so that
// other threads can get to it
if (self.os_data.available_eventfd_resume_nodes.pop()) |resume_stack_node| {
if (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| {
const eventfd_node = &resume_stack_node.data;
eventfd_node.base.handle = handle;
// the pending count is already accounted for
const epoll_events = posix.EPOLLONESHOT | std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET;
self.modFd(eventfd_node.eventfd, eventfd_node.epoll_op, epoll_events, &eventfd_node.base) catch |_| {
// fine, we didn't need it anyway
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
self.os_data.available_eventfd_resume_nodes.push(resume_stack_node);
resume handle;
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
continue :start_over;
};
switch (builtin.os) {
builtin.Os.macosx => {
const kevent_array = (*[1]posix.Kevent)(&eventfd_node.kevent);
const eventlist = ([*]posix.Kevent)(undefined)[0..0];
_ = std.os.bsdKEvent(self.os_data.kqfd, kevent_array, eventlist, null) catch |_| {
// fine, we didn't need it anyway
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
self.available_eventfd_resume_nodes.push(resume_stack_node);
resume handle;
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
continue :start_over;
};
},
builtin.Os.linux => {
// the pending count is already accounted for
const epoll_events = posix.EPOLLONESHOT | std.os.linux.EPOLLIN | std.os.linux.EPOLLOUT | std.os.linux.EPOLLET;
self.modFd(eventfd_node.eventfd, eventfd_node.epoll_op, epoll_events, &eventfd_node.base) catch |_| {
// fine, we didn't need it anyway
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
self.available_eventfd_resume_nodes.push(resume_stack_node);
resume handle;
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
continue :start_over;
};
},
else => @compileError("unsupported OS"),
}
} else {
// threads are too busy, can't add another eventfd to wake one up
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
@ -359,35 +464,74 @@ pub const Loop = struct {
const pending_event_count = @atomicLoad(usize, &self.pending_event_count, AtomicOrder.SeqCst);
if (pending_event_count == 0) {
// cause all the threads to stop
// writing 8 bytes to an eventfd cannot fail
std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
return;
switch (builtin.os) {
builtin.Os.linux => {
// writing 8 bytes to an eventfd cannot fail
std.os.posixWrite(self.os_data.final_eventfd, wakeup_bytes) catch unreachable;
return;
},
builtin.Os.macosx => {
const final_kevent = (*[1]posix.Kevent)(&self.os_data.final_kevent);
const eventlist = ([*]posix.Kevent)(undefined)[0..0];
// cannot fail because we already added it and this just enables it
_ = std.os.bsdKEvent(self.os_data.kqfd, final_kevent, eventlist, null) catch unreachable;
return;
},
else => @compileError("unsupported OS"),
}
}
_ = @atomicRmw(u8, &self.dispatch_lock, AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst);
}
// only process 1 event so we don't steal from other threads
var events: [1]std.os.linux.epoll_event = undefined;
const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1);
for (events[0..count]) |ev| {
const resume_node = @intToPtr(*ResumeNode, ev.data.ptr);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
ResumeNode.Id.Basic => {},
ResumeNode.Id.Stop => return,
ResumeNode.Id.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
event_fd_node.epoll_op = posix.EPOLL_CTL_MOD;
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.os_data.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == ResumeNode.Id.EventFd) {
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
switch (builtin.os) {
builtin.Os.linux => {
// only process 1 event so we don't steal from other threads
var events: [1]std.os.linux.epoll_event = undefined;
const count = std.os.linuxEpollWait(self.os_data.epollfd, events[0..], -1);
for (events[0..count]) |ev| {
const resume_node = @intToPtr(*ResumeNode, ev.data.ptr);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
ResumeNode.Id.Basic => {},
ResumeNode.Id.Stop => return,
ResumeNode.Id.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
event_fd_node.epoll_op = posix.EPOLL_CTL_MOD;
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == ResumeNode.Id.EventFd) {
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
}
},
builtin.Os.macosx => {
var eventlist: [1]posix.Kevent = undefined;
const count = std.os.bsdKEvent(self.os_data.kqfd, self.os_data.kevents, eventlist[0..], null) catch unreachable;
for (eventlist[0..count]) |ev| {
const resume_node = @intToPtr(*ResumeNode, ev.udata);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
ResumeNode.Id.Basic => {},
ResumeNode.Id.Stop => return,
ResumeNode.Id.EventFd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == ResumeNode.Id.EventFd) {
_ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst);
}
}
},
else => @compileError("unsupported OS"),
}
}
}
@ -395,12 +539,13 @@ pub const Loop = struct {
const OsData = switch (builtin.os) {
builtin.Os.linux => struct {
epollfd: i32,
// pre-allocated eventfds. all permanently active.
// this is how we send promises to be resumed on other threads.
available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd),
eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node,
final_eventfd: i32,
final_eventfd_event: posix.epoll_event,
final_eventfd_event: std.os.linux.epoll_event,
},
builtin.Os.macosx => struct {
kqfd: i32,
final_kevent: posix.Kevent,
kevents: []posix.Kevent,
},
else => struct {},
};

View File

@ -264,6 +264,119 @@ pub const SIGUSR1 = 30;
/// user defined signal 2
pub const SIGUSR2 = 31;
pub const KEVENT_FLAG_NONE = 0x000; /// no flag value
pub const KEVENT_FLAG_IMMEDIATE = 0x001; /// immediate timeout
pub const KEVENT_FLAG_ERROR_EVENTS = 0x002; /// output events only include change
pub const EV_ADD = 0x0001; /// add event to kq (implies enable)
pub const EV_DELETE = 0x0002; /// delete event from kq
pub const EV_ENABLE = 0x0004; /// enable event
pub const EV_DISABLE = 0x0008; /// disable event (not reported)
pub const EV_ONESHOT = 0x0010; /// only report one occurrence
pub const EV_CLEAR = 0x0020; /// clear event state after reporting
/// force immediate event output
/// ... with or without EV_ERROR
/// ... use KEVENT_FLAG_ERROR_EVENTS
/// on syscalls supporting flags
pub const EV_RECEIPT = 0x0040;
pub const EV_DISPATCH = 0x0080; /// disable event after reporting
pub const EV_UDATA_SPECIFIC = 0x0100; /// unique kevent per udata value
/// ... in combination with EV_DELETE
/// will defer delete until udata-specific
/// event enabled. EINPROGRESS will be
/// returned to indicate the deferral
pub const EV_DISPATCH2 = EV_DISPATCH | EV_UDATA_SPECIFIC;
/// report that source has vanished
/// ... only valid with EV_DISPATCH2
pub const EV_VANISHED = 0x0200;
pub const EV_SYSFLAGS = 0xF000; /// reserved by system
pub const EV_FLAG0 = 0x1000; /// filter-specific flag
pub const EV_FLAG1 = 0x2000; /// filter-specific flag
pub const EV_EOF = 0x8000; /// EOF detected
pub const EV_ERROR = 0x4000; /// error, data contains errno
pub const EV_POLL = EV_FLAG0;
pub const EV_OOBAND = EV_FLAG1;
pub const EVFILT_READ = -1;
pub const EVFILT_WRITE = -2;
pub const EVFILT_AIO = -3; /// attached to aio requests
pub const EVFILT_VNODE = -4; /// attached to vnodes
pub const EVFILT_PROC = -5; /// attached to struct proc
pub const EVFILT_SIGNAL = -6; /// attached to struct proc
pub const EVFILT_TIMER = -7; /// timers
pub const EVFILT_MACHPORT = -8; /// Mach portsets
pub const EVFILT_FS = -9; /// Filesystem events
pub const EVFILT_USER = -10; /// User events
pub const EVFILT_VM = -12; /// Virtual memory events
pub const EVFILT_EXCEPT = -15; /// Exception events
pub const EVFILT_SYSCOUNT = 17;
/// On input, NOTE_TRIGGER causes the event to be triggered for output.
pub const NOTE_TRIGGER = 0x01000000;
pub const NOTE_FFNOP = 0x00000000; /// ignore input fflags
pub const NOTE_FFAND = 0x40000000; /// and fflags
pub const NOTE_FFOR = 0x80000000; /// or fflags
pub const NOTE_FFCOPY = 0xc0000000; /// copy fflags
pub const NOTE_FFCTRLMASK = 0xc0000000; /// mask for operations
pub const NOTE_FFLAGSMASK = 0x00ffffff;
pub const NOTE_LOWAT = 0x00000001; /// low water mark
pub const NOTE_OOB = 0x00000002; /// OOB data
pub const NOTE_DELETE = 0x00000001; /// vnode was removed
pub const NOTE_WRITE = 0x00000002; /// data contents changed
pub const NOTE_EXTEND = 0x00000004; /// size increased
pub const NOTE_ATTRIB = 0x00000008; /// attributes changed
pub const NOTE_LINK = 0x00000010; /// link count changed
pub const NOTE_RENAME = 0x00000020; /// vnode was renamed
pub const NOTE_REVOKE = 0x00000040; /// vnode access was revoked
pub const NOTE_NONE = 0x00000080; /// No specific vnode event: to test for EVFILT_READ activation
pub const NOTE_FUNLOCK = 0x00000100; /// vnode was unlocked by flock(2)
pub const NOTE_EXIT = 0x80000000; /// process exited
pub const NOTE_FORK = 0x40000000; /// process forked
pub const NOTE_EXEC = 0x20000000; /// process exec'd
pub const NOTE_SIGNAL = 0x08000000; /// shared with EVFILT_SIGNAL
pub const NOTE_EXITSTATUS = 0x04000000; /// exit status to be returned, valid for child process only
pub const NOTE_EXIT_DETAIL = 0x02000000; /// provide details on reasons for exit
pub const NOTE_PDATAMASK = 0x000fffff; /// mask for signal & exit status
pub const NOTE_PCTRLMASK = (~NOTE_PDATAMASK);
pub const NOTE_EXIT_DETAIL_MASK = 0x00070000;
pub const NOTE_EXIT_DECRYPTFAIL = 0x00010000;
pub const NOTE_EXIT_MEMORY = 0x00020000;
pub const NOTE_EXIT_CSERROR = 0x00040000;
pub const NOTE_VM_PRESSURE = 0x80000000; /// will react on memory pressure
pub const NOTE_VM_PRESSURE_TERMINATE = 0x40000000; /// will quit on memory pressure, possibly after cleaning up dirty state
pub const NOTE_VM_PRESSURE_SUDDEN_TERMINATE = 0x20000000; /// will quit immediately on memory pressure
pub const NOTE_VM_ERROR = 0x10000000; /// there was an error
pub const NOTE_SECONDS = 0x00000001; /// data is seconds
pub const NOTE_USECONDS = 0x00000002; /// data is microseconds
pub const NOTE_NSECONDS = 0x00000004; /// data is nanoseconds
pub const NOTE_ABSOLUTE = 0x00000008; /// absolute timeout
pub const NOTE_LEEWAY = 0x00000010; /// ext[1] holds leeway for power aware timers
pub const NOTE_CRITICAL = 0x00000020; /// system does minimal timer coalescing
pub const NOTE_BACKGROUND = 0x00000040; /// system does maximum timer coalescing
pub const NOTE_MACH_CONTINUOUS_TIME = 0x00000080;
pub const NOTE_MACHTIME = 0x00000100; /// data is mach absolute time units
fn wstatus(x: i32) i32 {
return x & 0o177;
}
@ -385,6 +498,20 @@ pub fn getdirentries64(fd: i32, buf_ptr: [*]u8, buf_len: usize, basep: *i64) usi
return errnoWrap(@bitCast(isize, c.__getdirentries64(fd, buf_ptr, buf_len, basep)));
}
pub fn kqueue() usize {
return errnoWrap(c.kqueue());
}
pub fn kevent(kq: i32, changelist: []const Kevent, eventlist: []Kevent, timeout: ?*const timespec) usize {
return errnoWrap(c.kevent(kq, changelist.ptr, @intCast(c_int, changelist.len), eventlist.ptr, @intCast(c_int, eventlist.len), timeout,));
}
pub fn kevent64(kq: i32, changelist: []const kevent64_s, eventlist: []kevent64_s, flags: u32,
timeout: ?*const timespec) usize
{
return errnoWrap(c.kevent64(kq, changelist.ptr, changelist.len, eventlist.ptr, eventlist.len, flags, timeout));
}
pub fn mkdir(path: [*]const u8, mode: u32) usize {
return errnoWrap(c.mkdir(path, mode));
}
@ -474,6 +601,10 @@ pub const dirent = c.dirent;
pub const sa_family_t = c.sa_family_t;
pub const sockaddr = c.sockaddr;
/// Renamed from `kevent` to `Kevent` to avoid conflict with the syscall.
pub const Kevent = c.Kevent;
pub const kevent64_s = c.kevent64_s;
/// Renamed from `sigaction` to `Sigaction` to avoid conflict with the syscall.
pub const Sigaction = struct {
handler: extern fn (i32) void,

View File

@ -2787,3 +2787,59 @@ pub fn cpuCount(fallback_allocator: *mem.Allocator) CpuCountError!usize {
}
}
}
pub const BsdKQueueError = error {
/// The per-process limit on the number of open file descriptors has been reached.
ProcessFdQuotaExceeded,
/// The system-wide limit on the total number of open files has been reached.
SystemFdQuotaExceeded,
Unexpected,
};
pub fn bsdKQueue() BsdKQueueError!i32 {
const rc = posix.kqueue();
const err = posix.getErrno(rc);
switch (err) {
0 => return @intCast(i32, rc),
posix.EMFILE => return BsdKQueueError.ProcessFdQuotaExceeded,
posix.ENFILE => return BsdKQueueError.SystemFdQuotaExceeded,
else => return unexpectedErrorPosix(err),
}
}
pub const BsdKEventError = error {
/// The process does not have permission to register a filter.
AccessDenied,
/// The event could not be found to be modified or deleted.
EventNotFound,
/// No memory was available to register the event.
SystemResources,
/// The specified process to attach to does not exist.
ProcessNotFound,
};
pub fn bsdKEvent(kq: i32, changelist: []const posix.Kevent, eventlist: []posix.Kevent,
timeout: ?*const posix.timespec) BsdKEventError!usize
{
while (true) {
const rc = posix.kevent(kq, changelist, eventlist, timeout);
const err = posix.getErrno(rc);
switch (err) {
0 => return rc,
posix.EACCES => return BsdKEventError.AccessDenied,
posix.EFAULT => unreachable,
posix.EBADF => unreachable,
posix.EINTR => continue,
posix.EINVAL => unreachable,
posix.ENOENT => return BsdKEventError.EventNotFound,
posix.ENOMEM => return BsdKEventError.SystemResources,
posix.ESRCH => return BsdKEventError.ProcessNotFound,
else => unreachable,
}
}
}