zig/src/bigint.cpp

1700 lines
53 KiB
C++
Raw Normal View History

2017-06-26 11:41:47 -07:00
/*
* Copyright (c) 2017 Andrew Kelley
*
* This file is part of zig, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
#include "bigfloat.hpp"
#include "bigint.hpp"
#include "buffer.hpp"
#include "list.hpp"
#include "os.hpp"
#include "softfloat.hpp"
2017-06-26 11:41:47 -07:00
2018-01-15 19:17:22 -08:00
#include <limits>
#include <algorithm>
2017-06-26 11:41:47 -07:00
static void bigint_normalize(BigInt *dest) {
const uint64_t *digits = bigint_ptr(dest);
size_t last_nonzero_digit = SIZE_MAX;
for (size_t i = 0; i < dest->digit_count; i += 1) {
uint64_t digit = digits[i];
if (digit != 0) {
last_nonzero_digit = i;
}
}
if (last_nonzero_digit == SIZE_MAX) {
dest->is_negative = false;
dest->digit_count = 0;
} else {
dest->digit_count = last_nonzero_digit + 1;
if (last_nonzero_digit == 0) {
dest->data.digit = digits[0];
}
}
}
static uint8_t digit_to_char(uint8_t digit, bool uppercase) {
if (digit <= 9) {
return digit + '0';
} else if (digit <= 35) {
return digit + (uppercase ? 'A' : 'a');
} else {
zig_unreachable();
}
}
size_t bigint_bits_needed(const BigInt *op) {
size_t full_bits = op->digit_count * 64;
size_t leading_zero_count = bigint_clz(op, full_bits);
size_t bits_needed = full_bits - leading_zero_count;
return bits_needed + op->is_negative;
}
static void to_twos_complement(BigInt *dest, const BigInt *op, size_t bit_count) {
if (bit_count == 0 || op->digit_count == 0) {
bigint_init_unsigned(dest, 0);
return;
}
if (op->is_negative) {
BigInt negated = {0};
bigint_negate(&negated, op);
BigInt inverted = {0};
bigint_not(&inverted, &negated, bit_count, false);
BigInt one = {0};
bigint_init_unsigned(&one, 1);
bigint_add(dest, &inverted, &one);
return;
}
dest->is_negative = false;
const uint64_t *op_digits = bigint_ptr(op);
if (op->digit_count == 1) {
dest->data.digit = op_digits[0];
if (bit_count < 64) {
dest->data.digit &= (1ULL << bit_count) - 1;
}
dest->digit_count = 1;
bigint_normalize(dest);
return;
}
size_t digits_to_copy = bit_count / 64;
size_t leftover_bits = bit_count % 64;
dest->digit_count = digits_to_copy + ((leftover_bits == 0) ? 0 : 1);
if (dest->digit_count == 1 && leftover_bits == 0) {
dest->data.digit = op_digits[0];
if (dest->data.digit == 0) dest->digit_count = 0;
return;
}
2017-06-26 11:41:47 -07:00
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
for (size_t i = 0; i < digits_to_copy; i += 1) {
uint64_t digit = (i < op->digit_count) ? op_digits[i] : 0;
dest->data.digits[i] = digit;
}
if (leftover_bits != 0) {
uint64_t digit = (digits_to_copy < op->digit_count) ? op_digits[digits_to_copy] : 0;
dest->data.digits[digits_to_copy] = digit & ((1ULL << leftover_bits) - 1);
}
bigint_normalize(dest);
}
static bool bit_at_index(const BigInt *bi, size_t index) {
size_t digit_index = index / 64;
if (digit_index >= bi->digit_count)
return false;
2017-06-26 11:41:47 -07:00
size_t digit_bit_index = index % 64;
const uint64_t *digits = bigint_ptr(bi);
uint64_t digit = digits[digit_index];
return ((digit >> digit_bit_index) & 0x1) == 0x1;
}
static void from_twos_complement(BigInt *dest, const BigInt *src, size_t bit_count, bool is_signed) {
assert(!src->is_negative);
if (bit_count == 0 || src->digit_count == 0) {
bigint_init_unsigned(dest, 0);
return;
}
if (is_signed && bit_at_index(src, bit_count - 1)) {
BigInt negative_one = {0};
bigint_init_signed(&negative_one, -1);
BigInt minus_one = {0};
bigint_add(&minus_one, src, &negative_one);
BigInt inverted = {0};
bigint_not(&inverted, &minus_one, bit_count, false);
bigint_negate(dest, &inverted);
return;
}
bigint_init_bigint(dest, src);
}
void bigint_init_unsigned(BigInt *dest, uint64_t x) {
if (x == 0) {
dest->digit_count = 0;
dest->is_negative = false;
return;
}
dest->digit_count = 1;
dest->data.digit = x;
dest->is_negative = false;
}
void bigint_init_signed(BigInt *dest, int64_t x) {
if (x >= 0) {
return bigint_init_unsigned(dest, x);
}
dest->is_negative = true;
dest->digit_count = 1;
dest->data.digit = ((uint64_t)(-(x + 1))) + 1;
}
void bigint_init_data(BigInt *dest, const uint64_t *digits, size_t digit_count, bool is_negative) {
if (digit_count == 0) {
return bigint_init_unsigned(dest, 0);
} else if (digit_count == 1) {
dest->digit_count = 1;
dest->data.digit = digits[0];
dest->is_negative = is_negative;
bigint_normalize(dest);
return;
}
dest->digit_count = digit_count;
dest->is_negative = is_negative;
dest->data.digits = allocate_nonzero<uint64_t>(digit_count);
memcpy(dest->data.digits, digits, sizeof(uint64_t) * digit_count);
bigint_normalize(dest);
}
2017-06-26 11:41:47 -07:00
void bigint_init_bigint(BigInt *dest, const BigInt *src) {
if (src->digit_count == 0) {
return bigint_init_unsigned(dest, 0);
} else if (src->digit_count == 1) {
dest->digit_count = 1;
dest->data.digit = src->data.digit;
dest->is_negative = src->is_negative;
return;
}
dest->is_negative = src->is_negative;
dest->digit_count = src->digit_count;
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
memcpy(dest->data.digits, src->data.digits, sizeof(uint64_t) * dest->digit_count);
}
void bigint_init_bigfloat(BigInt *dest, const BigFloat *op) {
float128_t zero;
ui32_to_f128M(0, &zero);
dest->is_negative = f128M_lt(&op->value, &zero);
float128_t abs_val;
if (dest->is_negative) {
f128M_sub(&zero, &op->value, &abs_val);
2017-06-26 11:41:47 -07:00
} else {
memcpy(&abs_val, &op->value, sizeof(float128_t));
}
float128_t max_u64;
ui64_to_f128M(UINT64_MAX, &max_u64);
if (f128M_le(&abs_val, &max_u64)) {
dest->digit_count = 1;
dest->data.digit = f128M_to_ui64(&op->value, softfloat_round_minMag, false);
bigint_normalize(dest);
return;
2017-06-26 11:41:47 -07:00
}
float128_t amt;
f128M_div(&abs_val, &max_u64, &amt);
float128_t remainder;
f128M_rem(&abs_val, &max_u64, &remainder);
dest->digit_count = 2;
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
dest->data.digits[0] = f128M_to_ui64(&remainder, softfloat_round_minMag, false);
dest->data.digits[1] = f128M_to_ui64(&amt, softfloat_round_minMag, false);
bigint_normalize(dest);
2017-06-26 11:41:47 -07:00
}
bool bigint_fits_in_bits(const BigInt *bn, size_t bit_count, bool is_signed) {
assert(bn->digit_count != 1 || bn->data.digit != 0);
if (bit_count == 0) {
return bigint_cmp_zero(bn) == CmpEQ;
}
if (bn->digit_count == 0) {
return true;
}
if (!is_signed) {
size_t full_bits = bn->digit_count * 64;
size_t leading_zero_count = bigint_clz(bn, full_bits);
return bit_count >= full_bits - leading_zero_count;
}
BigInt one = {0};
bigint_init_unsigned(&one, 1);
BigInt shl_amt = {0};
bigint_init_unsigned(&shl_amt, bit_count - 1);
BigInt max_value_plus_one = {0};
bigint_shl(&max_value_plus_one, &one, &shl_amt);
BigInt max_value = {0};
bigint_sub(&max_value, &max_value_plus_one, &one);
BigInt min_value = {0};
bigint_negate(&min_value, &max_value_plus_one);
Cmp min_cmp = bigint_cmp(bn, &min_value);
Cmp max_cmp = bigint_cmp(bn, &max_value);
return (min_cmp == CmpGT || min_cmp == CmpEQ) && (max_cmp == CmpLT || max_cmp == CmpEQ);
}
void bigint_write_twos_complement(const BigInt *big_int, uint8_t *buf, size_t bit_count, bool is_big_endian) {
if (bit_count == 0)
return;
BigInt twos_comp = {0};
to_twos_complement(&twos_comp, big_int, bit_count);
const uint64_t *twos_comp_digits = bigint_ptr(&twos_comp);
size_t bits_in_last_digit = bit_count % 64;
if (bits_in_last_digit == 0) bits_in_last_digit = 64;
2017-06-26 11:41:47 -07:00
size_t bytes_in_last_digit = (bits_in_last_digit + 7) / 8;
size_t unwritten_byte_count = 8 - bytes_in_last_digit;
if (is_big_endian) {
size_t last_digit_index = (bit_count - 1) / 64;
size_t digit_index = last_digit_index;
size_t buf_index = 0;
for (;;) {
uint64_t x = (digit_index < twos_comp.digit_count) ? twos_comp_digits[digit_index] : 0;
for (size_t byte_index = 7;;) {
uint8_t byte = x & 0xff;
if (digit_index == last_digit_index) {
buf[buf_index + byte_index - unwritten_byte_count] = byte;
if (byte_index == unwritten_byte_count) break;
} else {
buf[buf_index + byte_index] = byte;
}
if (byte_index == 0) break;
byte_index -= 1;
x >>= 8;
}
if (digit_index == 0) break;
digit_index -= 1;
if (digit_index == last_digit_index) {
buf_index += bytes_in_last_digit;
} else {
buf_index += 8;
}
}
} else {
size_t digit_count = (bit_count + 63) / 64;
size_t buf_index = 0;
for (size_t digit_index = 0; digit_index < digit_count; digit_index += 1) {
uint64_t x = (digit_index < twos_comp.digit_count) ? twos_comp_digits[digit_index] : 0;
for (size_t byte_index = 0;
byte_index < 8 && (digit_index + 1 < digit_count || byte_index < bytes_in_last_digit);
byte_index += 1)
{
2017-06-26 11:41:47 -07:00
uint8_t byte = x & 0xff;
buf[buf_index] = byte;
buf_index += 1;
x >>= 8;
}
}
}
}
void bigint_read_twos_complement(BigInt *dest, const uint8_t *buf, size_t bit_count, bool is_big_endian,
bool is_signed)
{
if (bit_count == 0) {
bigint_init_unsigned(dest, 0);
return;
}
dest->digit_count = (bit_count + 63) / 64;
uint64_t *digits;
if (dest->digit_count == 1) {
digits = &dest->data.digit;
} else {
digits = allocate_nonzero<uint64_t>(dest->digit_count);
dest->data.digits = digits;
}
size_t bits_in_last_digit = bit_count % 64;
if (bits_in_last_digit == 0) {
bits_in_last_digit = 64;
}
size_t bytes_in_last_digit = (bits_in_last_digit + 7) / 8;
size_t unread_byte_count = 8 - bytes_in_last_digit;
if (is_big_endian) {
size_t buf_index = 0;
uint64_t digit = 0;
for (size_t byte_index = unread_byte_count; byte_index < 8; byte_index += 1) {
uint8_t byte = buf[buf_index];
buf_index += 1;
digit <<= 8;
digit |= byte;
}
digits[dest->digit_count - 1] = digit;
for (size_t digit_index = 1; digit_index < dest->digit_count; digit_index += 1) {
digit = 0;
for (size_t byte_index = 0; byte_index < 8; byte_index += 1) {
uint8_t byte = buf[buf_index];
buf_index += 1;
digit <<= 8;
digit |= byte;
}
digits[dest->digit_count - 1 - digit_index] = digit;
}
} else {
size_t buf_index = 0;
for (size_t digit_index = 0; digit_index < dest->digit_count; digit_index += 1) {
uint64_t digit = 0;
size_t end_byte_index = (digit_index == dest->digit_count - 1) ? bytes_in_last_digit : 8;
for (size_t byte_index = 0; byte_index < end_byte_index; byte_index += 1) {
uint64_t byte = buf[buf_index];
buf_index += 1;
digit |= byte << (8 * byte_index);
}
digits[digit_index] = digit;
}
}
if (is_signed) {
bigint_normalize(dest);
BigInt tmp = {0};
bigint_init_bigint(&tmp, dest);
from_twos_complement(dest, &tmp, bit_count, true);
} else {
dest->is_negative = false;
bigint_normalize(dest);
}
}
#if defined(_MSC_VER)
2017-09-10 13:05:18 -07:00
static bool add_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
*result = op1 + op2;
return *result < op1 || *result < op2;
2017-09-10 13:05:18 -07:00
}
static bool sub_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
*result = op1 - op2;
return *result > op1;
2017-09-10 13:05:18 -07:00
}
bool mul_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
*result = op1 * op2;
if (op1 == 0 || op2 == 0)
return false;
if (op1 > UINT64_MAX / op2)
return true;
if (op2 > UINT64_MAX / op1)
return true;
return false;
2017-09-10 13:05:18 -07:00
}
#else
2017-06-26 11:41:47 -07:00
static bool add_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
return __builtin_uaddll_overflow((unsigned long long)op1, (unsigned long long)op2,
(unsigned long long *)result);
}
static bool sub_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
return __builtin_usubll_overflow((unsigned long long)op1, (unsigned long long)op2,
(unsigned long long *)result);
}
2017-09-10 13:05:18 -07:00
bool mul_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
2017-06-26 11:41:47 -07:00
return __builtin_umulll_overflow((unsigned long long)op1, (unsigned long long)op2,
(unsigned long long *)result);
}
2017-09-10 13:05:18 -07:00
#endif
2017-06-26 11:41:47 -07:00
void bigint_add(BigInt *dest, const BigInt *op1, const BigInt *op2) {
if (op1->digit_count == 0) {
return bigint_init_bigint(dest, op2);
}
if (op2->digit_count == 0) {
return bigint_init_bigint(dest, op1);
}
if (op1->is_negative == op2->is_negative) {
dest->is_negative = op1->is_negative;
const uint64_t *op1_digits = bigint_ptr(op1);
const uint64_t *op2_digits = bigint_ptr(op2);
2017-09-10 13:05:18 -07:00
bool overflow = add_u64_overflow(op1_digits[0], op2_digits[0], &dest->data.digit);
2017-06-26 11:41:47 -07:00
if (overflow == 0 && op1->digit_count == 1 && op2->digit_count == 1) {
dest->digit_count = 1;
bigint_normalize(dest);
return;
}
size_t i = 1;
uint64_t first_digit = dest->data.digit;
dest->data.digits = allocate_nonzero<uint64_t>(max(op1->digit_count, op2->digit_count) + 1);
dest->data.digits[0] = first_digit;
for (;;) {
bool found_digit = false;
uint64_t x = overflow;
overflow = 0;
if (i < op1->digit_count) {
found_digit = true;
uint64_t digit = op1_digits[i];
overflow += add_u64_overflow(x, digit, &x);
}
if (i < op2->digit_count) {
found_digit = true;
uint64_t digit = op2_digits[i];
overflow += add_u64_overflow(x, digit, &x);
}
dest->data.digits[i] = x;
i += 1;
2017-06-26 11:41:47 -07:00
if (!found_digit) {
dest->digit_count = i;
bigint_normalize(dest);
return;
2017-06-26 11:41:47 -07:00
}
}
}
const BigInt *op_pos;
const BigInt *op_neg;
if (op1->is_negative) {
op_neg = op1;
op_pos = op2;
} else {
op_pos = op1;
op_neg = op2;
}
BigInt op_neg_abs = {0};
bigint_negate(&op_neg_abs, op_neg);
const BigInt *bigger_op;
const BigInt *smaller_op;
switch (bigint_cmp(op_pos, &op_neg_abs)) {
case CmpEQ:
bigint_init_unsigned(dest, 0);
return;
case CmpLT:
bigger_op = &op_neg_abs;
smaller_op = op_pos;
dest->is_negative = true;
break;
case CmpGT:
bigger_op = op_pos;
smaller_op = &op_neg_abs;
dest->is_negative = false;
break;
}
const uint64_t *bigger_op_digits = bigint_ptr(bigger_op);
const uint64_t *smaller_op_digits = bigint_ptr(smaller_op);
uint64_t overflow = sub_u64_overflow(bigger_op_digits[0], smaller_op_digits[0], &dest->data.digit);
if (overflow == 0 && bigger_op->digit_count == 1 && smaller_op->digit_count == 1) {
dest->digit_count = 1;
bigint_normalize(dest);
return;
}
uint64_t first_digit = dest->data.digit;
dest->data.digits = allocate_nonzero<uint64_t>(bigger_op->digit_count);
dest->data.digits[0] = first_digit;
size_t i = 1;
for (;;) {
bool found_digit = false;
uint64_t x = bigger_op_digits[i];
uint64_t prev_overflow = overflow;
overflow = 0;
if (i < smaller_op->digit_count) {
found_digit = true;
uint64_t digit = smaller_op_digits[i];
overflow += sub_u64_overflow(x, digit, &x);
}
if (sub_u64_overflow(x, prev_overflow, &x)) {
found_digit = true;
overflow += 1;
}
dest->data.digits[i] = x;
i += 1;
2018-01-15 19:17:22 -08:00
if (!found_digit || i >= bigger_op->digit_count)
2017-06-26 11:41:47 -07:00
break;
}
assert(overflow == 0);
dest->digit_count = i;
bigint_normalize(dest);
}
void bigint_add_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
BigInt unwrapped = {0};
bigint_add(&unwrapped, op1, op2);
bigint_truncate(dest, &unwrapped, bit_count, is_signed);
}
void bigint_sub(BigInt *dest, const BigInt *op1, const BigInt *op2) {
BigInt op2_negated = {0};
bigint_negate(&op2_negated, op2);
return bigint_add(dest, op1, &op2_negated);
}
void bigint_sub_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
BigInt op2_negated = {0};
bigint_negate(&op2_negated, op2);
return bigint_add_wrap(dest, op1, &op2_negated, bit_count, is_signed);
}
2017-09-13 23:48:16 -07:00
static void mul_overflow(uint64_t op1, uint64_t op2, uint64_t *lo, uint64_t *hi) {
uint64_t u1 = (op1 & 0xffffffff);
uint64_t v1 = (op2 & 0xffffffff);
uint64_t t = (u1 * v1);
uint64_t w3 = (t & 0xffffffff);
uint64_t k = (t >> 32);
op1 >>= 32;
t = (op1 * v1) + k;
k = (t & 0xffffffff);
uint64_t w1 = (t >> 32);
op2 >>= 32;
t = (u1 * op2) + k;
k = (t >> 32);
2017-06-26 11:41:47 -07:00
2017-09-13 23:48:16 -07:00
*hi = (op1 * op2) + w1 + k;
*lo = (t << 32) + w3;
}
static void mul_scalar(BigInt *dest, const BigInt *op, uint64_t scalar) {
bigint_init_unsigned(dest, 0);
BigInt bi_64;
bigint_init_unsigned(&bi_64, 64);
const uint64_t *op_digits = bigint_ptr(op);
size_t i = op->digit_count - 1;
for (;;) {
BigInt shifted;
bigint_shl(&shifted, dest, &bi_64);
uint64_t result_scalar;
uint64_t carry_scalar;
mul_overflow(scalar, op_digits[i], &result_scalar, &carry_scalar);
BigInt result;
bigint_init_unsigned(&result, result_scalar);
BigInt carry;
bigint_init_unsigned(&carry, carry_scalar);
BigInt carry_shifted;
bigint_shl(&carry_shifted, &carry, &bi_64);
BigInt tmp;
bigint_add(&tmp, &shifted, &carry_shifted);
bigint_add(dest, &tmp, &result);
if (i == 0) {
break;
}
i -= 1;
}
2017-06-26 11:41:47 -07:00
}
void bigint_mul(BigInt *dest, const BigInt *op1, const BigInt *op2) {
if (op1->digit_count == 0 || op2->digit_count == 0) {
return bigint_init_unsigned(dest, 0);
}
const uint64_t *op1_digits = bigint_ptr(op1);
const uint64_t *op2_digits = bigint_ptr(op2);
uint64_t carry;
mul_overflow(op1_digits[0], op2_digits[0], &dest->data.digit, &carry);
if (carry == 0 && op1->digit_count == 1 && op2->digit_count == 1) {
dest->is_negative = (op1->is_negative != op2->is_negative);
dest->digit_count = 1;
bigint_normalize(dest);
return;
}
bigint_init_unsigned(dest, 0);
BigInt bi_64;
bigint_init_unsigned(&bi_64, 64);
size_t i = op2->digit_count - 1;
for (;;) {
BigInt shifted;
bigint_shl(&shifted, dest, &bi_64);
BigInt scalar_result;
mul_scalar(&scalar_result, op1, op2_digits[i]);
bigint_add(dest, &scalar_result, &shifted);
if (i == 0) {
break;
}
i -= 1;
}
dest->is_negative = (op1->is_negative != op2->is_negative);
bigint_normalize(dest);
2017-06-26 11:41:47 -07:00
}
void bigint_mul_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
BigInt unwrapped = {0};
bigint_mul(&unwrapped, op1, op2);
bigint_truncate(dest, &unwrapped, bit_count, is_signed);
}
2018-01-15 19:17:22 -08:00
enum ZeroBehavior {
/// \brief The returned value is undefined.
ZB_Undefined,
/// \brief The returned value is numeric_limits<T>::max()
ZB_Max,
/// \brief The returned value is numeric_limits<T>::digits
ZB_Width
};
template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
static std::size_t count(T Val, ZeroBehavior) {
if (!Val)
return std::numeric_limits<T>::digits;
// Bisection method.
std::size_t ZeroBits = 0;
for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
T Tmp = Val >> Shift;
if (Tmp)
Val = Tmp;
else
ZeroBits |= Shift;
}
return ZeroBits;
}
};
#if __GNUC__ >= 4 || defined(_MSC_VER)
template <typename T> struct LeadingZerosCounter<T, 4> {
static std::size_t count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 32;
#if defined(_MSC_VER)
unsigned long Index;
_BitScanReverse(&Index, Val);
return Index ^ 31;
#else
return __builtin_clz(Val);
#endif
}
};
#if !defined(_MSC_VER) || defined(_M_X64)
template <typename T> struct LeadingZerosCounter<T, 8> {
static std::size_t count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 64;
#if defined(_MSC_VER)
unsigned long Index;
_BitScanReverse64(&Index, Val);
return Index ^ 63;
#else
return __builtin_clzll(Val);
#endif
}
};
#endif
#endif
/// \brief Count number of 0's from the most significant bit to the least
/// stopping at the first 1.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
/// valid arguments.
template <typename T>
std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
static_assert(std::numeric_limits<T>::is_integer &&
!std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
}
/// Make a 64-bit integer from a high / low pair of 32-bit integers.
constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
return ((uint64_t)High << 32) | (uint64_t)Low;
}
/// Return the high 32 bits of a 64 bit value.
constexpr inline uint32_t Hi_32(uint64_t Value) {
return static_cast<uint32_t>(Value >> 32);
}
/// Return the low 32 bits of a 64 bit value.
constexpr inline uint32_t Lo_32(uint64_t Value) {
return static_cast<uint32_t>(Value);
}
/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
/// variables here have the same names as in the algorithm. Comments explain
/// the algorithm and any deviation from it.
static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
unsigned m, unsigned n)
{
assert(u && "Must provide dividend");
assert(v && "Must provide divisor");
assert(q && "Must provide quotient");
assert(u != v && u != q && v != q && "Must use different memory");
assert(n>1 && "n must be > 1");
// b denotes the base of the number system. In our case b is 2^32.
const uint64_t b = uint64_t(1) << 32;
// D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
// u and v by d. Note that we have taken Knuth's advice here to use a power
// of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
// 2 allows us to shift instead of multiply and it is easy to determine the
// shift amount from the leading zeros. We are basically normalizing the u
// and v so that its high bits are shifted to the top of v's range without
// overflow. Note that this can require an extra word in u so that u must
// be of length m+n+1.
unsigned shift = countLeadingZeros(v[n-1]);
uint32_t v_carry = 0;
uint32_t u_carry = 0;
if (shift) {
for (unsigned i = 0; i < m+n; ++i) {
uint32_t u_tmp = u[i] >> (32 - shift);
u[i] = (u[i] << shift) | u_carry;
u_carry = u_tmp;
}
for (unsigned i = 0; i < n; ++i) {
uint32_t v_tmp = v[i] >> (32 - shift);
v[i] = (v[i] << shift) | v_carry;
v_carry = v_tmp;
}
}
u[m+n] = u_carry;
// D2. [Initialize j.] Set j to m. This is the loop counter over the places.
int j = m;
do {
// D3. [Calculate q'.].
// Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
// Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
// Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
// qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
// on v[n-2] determines at high speed most of the cases in which the trial
// value qp is one too large, and it eliminates all cases where qp is two
// too large.
uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
uint64_t qp = dividend / v[n-1];
uint64_t rp = dividend % v[n-1];
if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
qp--;
rp += v[n-1];
if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
qp--;
}
// D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
// (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
// consists of a simple multiplication by a one-place number, combined with
// a subtraction.
// The digits (u[j+n]...u[j]) should be kept positive; if the result of
// this step is actually negative, (u[j+n]...u[j]) should be left as the
// true value plus b**(n+1), namely as the b's complement of
// the true value, and a "borrow" to the left should be remembered.
int64_t borrow = 0;
for (unsigned i = 0; i < n; ++i) {
uint64_t p = uint64_t(qp) * uint64_t(v[i]);
int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
u[j+i] = Lo_32(subres);
borrow = Hi_32(p) - Hi_32(subres);
}
bool isNeg = u[j+n] < borrow;
u[j+n] -= Lo_32(borrow);
// D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
// negative, go to step D6; otherwise go on to step D7.
q[j] = Lo_32(qp);
if (isNeg) {
// D6. [Add back]. The probability that this step is necessary is very
// small, on the order of only 2/b. Make sure that test data accounts for
// this possibility. Decrease q[j] by 1
q[j]--;
// and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
// A carry will occur to the left of u[j+n], and it should be ignored
// since it cancels with the borrow that occurred in D4.
bool carry = false;
for (unsigned i = 0; i < n; i++) {
uint32_t limit = std::min(u[j+i],v[i]);
u[j+i] += v[i] + carry;
carry = u[j+i] < limit || (carry && u[j+i] == limit);
}
u[j+n] += carry;
}
// D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
} while (--j >= 0);
// D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
// remainder may be obtained by dividing u[...] by d. If r is non-null we
// compute the remainder (urem uses this).
if (r) {
// The value d is expressed by the "shift" value above since we avoided
// multiplication by d by using a shift left. So, all we have to do is
// shift right here.
if (shift) {
uint32_t carry = 0;
for (int i = n-1; i >= 0; i--) {
r[i] = (u[i] >> shift) | carry;
carry = u[i] << (32 - shift);
}
} else {
for (int i = n-1; i >= 0; i--) {
r[i] = u[i];
}
}
}
}
// Implementation ported from LLVM/lib/Support/APInt.cpp
static void bigint_unsigned_division(const BigInt *op1, const BigInt *op2, BigInt *Quotient, BigInt *Remainder) {
Cmp cmp = bigint_cmp(op1, op2);
if (cmp == CmpLT) {
if (Quotient != nullptr) {
bigint_init_unsigned(Quotient, 0);
}
if (Remainder != nullptr) {
bigint_init_bigint(Remainder, op1);
}
return;
}
if (cmp == CmpEQ) {
if (Quotient != nullptr) {
bigint_init_unsigned(Quotient, 1);
}
if (Remainder != nullptr) {
bigint_init_unsigned(Remainder, 0);
}
return;
}
const uint64_t *LHS = bigint_ptr(op1);
const uint64_t *RHS = bigint_ptr(op2);
unsigned lhsWords = op1->digit_count;
unsigned rhsWords = op2->digit_count;
// First, compose the values into an array of 32-bit words instead of
// 64-bit words. This is a necessity of both the "short division" algorithm
// and the Knuth "classical algorithm" which requires there to be native
// operations for +, -, and * on an m bit value with an m*2 bit result. We
// can't use 64-bit operands here because we don't have native results of
// 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
// work on large-endian machines.
unsigned n = rhsWords * 2;
unsigned m = (lhsWords * 2) - n;
// Allocate space for the temporary values we need either on the stack, if
// it will fit, or on the heap if it won't.
uint32_t SPACE[128];
uint32_t *U = nullptr;
uint32_t *V = nullptr;
uint32_t *Q = nullptr;
uint32_t *R = nullptr;
if ((Remainder?4:3)*n+2*m+1 <= 128) {
U = &SPACE[0];
V = &SPACE[m+n+1];
Q = &SPACE[(m+n+1) + n];
if (Remainder)
R = &SPACE[(m+n+1) + n + (m+n)];
} else {
U = new uint32_t[m + n + 1];
V = new uint32_t[n];
Q = new uint32_t[m+n];
if (Remainder)
R = new uint32_t[n];
}
// Initialize the dividend
memset(U, 0, (m+n+1)*sizeof(uint32_t));
for (unsigned i = 0; i < lhsWords; ++i) {
uint64_t tmp = LHS[i];
U[i * 2] = Lo_32(tmp);
U[i * 2 + 1] = Hi_32(tmp);
}
U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
// Initialize the divisor
memset(V, 0, (n)*sizeof(uint32_t));
for (unsigned i = 0; i < rhsWords; ++i) {
uint64_t tmp = RHS[i];
V[i * 2] = Lo_32(tmp);
V[i * 2 + 1] = Hi_32(tmp);
}
// initialize the quotient and remainder
memset(Q, 0, (m+n) * sizeof(uint32_t));
if (Remainder)
memset(R, 0, n * sizeof(uint32_t));
// Now, adjust m and n for the Knuth division. n is the number of words in
// the divisor. m is the number of words by which the dividend exceeds the
// divisor (i.e. m+n is the length of the dividend). These sizes must not
// contain any zero words or the Knuth algorithm fails.
for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
n--;
m++;
}
for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
m--;
// If we're left with only a single word for the divisor, Knuth doesn't work
// so we implement the short division algorithm here. This is much simpler
// and faster because we are certain that we can divide a 64-bit quantity
// by a 32-bit quantity at hardware speed and short division is simply a
// series of such operations. This is just like doing short division but we
// are using base 2^32 instead of base 10.
assert(n != 0 && "Divide by zero?");
if (n == 1) {
uint32_t divisor = V[0];
uint32_t remainder = 0;
for (int i = m; i >= 0; i--) {
uint64_t partial_dividend = Make_64(remainder, U[i]);
if (partial_dividend == 0) {
Q[i] = 0;
remainder = 0;
} else if (partial_dividend < divisor) {
Q[i] = 0;
remainder = Lo_32(partial_dividend);
} else if (partial_dividend == divisor) {
Q[i] = 1;
remainder = 0;
} else {
Q[i] = Lo_32(partial_dividend / divisor);
remainder = Lo_32(partial_dividend - (Q[i] * divisor));
}
}
if (R)
R[0] = remainder;
} else {
// Now we're ready to invoke the Knuth classical divide algorithm. In this
// case n > 1.
KnuthDiv(U, V, Q, R, m, n);
}
// If the caller wants the quotient
if (Quotient) {
Quotient->is_negative = false;
2018-01-16 00:09:44 -08:00
Quotient->digit_count = lhsWords;
if (lhsWords == 1) {
Quotient->data.digit = Make_64(Q[1], Q[0]);
} else {
Quotient->data.digits = allocate<uint64_t>(lhsWords);
for (size_t i = 0; i < lhsWords; i += 1) {
Quotient->data.digits[i] = Make_64(Q[i*2+1], Q[i*2]);
}
2018-01-15 19:17:22 -08:00
}
}
// If the caller wants the remainder
if (Remainder) {
Remainder->is_negative = false;
2018-01-16 00:09:44 -08:00
Remainder->digit_count = rhsWords;
if (rhsWords == 1) {
Remainder->data.digit = Make_64(R[1], R[0]);
} else {
Remainder->data.digits = allocate<uint64_t>(rhsWords);
for (size_t i = 0; i < rhsWords; i += 1) {
Remainder->data.digits[i] = Make_64(R[i*2+1], R[i*2]);
}
2018-01-15 19:17:22 -08:00
}
}
}
2017-06-26 11:41:47 -07:00
void bigint_div_trunc(BigInt *dest, const BigInt *op1, const BigInt *op2) {
assert(op2->digit_count != 0); // division by zero
if (op1->digit_count == 0) {
bigint_init_unsigned(dest, 0);
return;
}
const uint64_t *op1_digits = bigint_ptr(op1);
const uint64_t *op2_digits = bigint_ptr(op2);
2018-01-15 19:17:22 -08:00
if (op1->digit_count == 1 && op2->digit_count == 1) {
dest->data.digit = op1_digits[0] / op2_digits[0];
dest->digit_count = 1;
dest->is_negative = op1->is_negative != op2->is_negative;
bigint_normalize(dest);
return;
}
if (op2->digit_count == 1 && op2_digits[0] == 1) {
// X / 1 == X
bigint_init_bigint(dest, op1);
dest->is_negative = op1->is_negative != op2->is_negative;
bigint_normalize(dest);
return;
}
const BigInt *op1_positive;
BigInt op1_positive_data;
if (op1->is_negative) {
bigint_negate(&op1_positive_data, op1);
op1_positive = &op1_positive_data;
} else {
op1_positive = op1;
}
const BigInt *op2_positive;
BigInt op2_positive_data;
if (op2->is_negative) {
bigint_negate(&op2_positive_data, op2);
op2_positive = &op2_positive_data;
} else {
op2_positive = op2;
}
bigint_unsigned_division(op1_positive, op2_positive, dest, nullptr);
2017-06-26 11:41:47 -07:00
dest->is_negative = op1->is_negative != op2->is_negative;
bigint_normalize(dest);
}
void bigint_div_floor(BigInt *dest, const BigInt *op1, const BigInt *op2) {
if (op1->is_negative != op2->is_negative) {
bigint_div_trunc(dest, op1, op2);
BigInt mult_again = {0};
bigint_mul(&mult_again, dest, op2);
mult_again.is_negative = op1->is_negative;
if (bigint_cmp(&mult_again, op1) != CmpEQ) {
BigInt tmp = {0};
bigint_init_bigint(&tmp, dest);
BigInt neg_one = {0};
bigint_init_signed(&neg_one, -1);
bigint_add(dest, &tmp, &neg_one);
}
bigint_normalize(dest);
} else {
bigint_div_trunc(dest, op1, op2);
}
}
void bigint_rem(BigInt *dest, const BigInt *op1, const BigInt *op2) {
assert(op2->digit_count != 0); // division by zero
if (op1->digit_count == 0) {
bigint_init_unsigned(dest, 0);
return;
}
const uint64_t *op1_digits = bigint_ptr(op1);
const uint64_t *op2_digits = bigint_ptr(op2);
2018-01-15 19:17:22 -08:00
if (op1->digit_count == 1 && op2->digit_count == 1) {
dest->data.digit = op1_digits[0] % op2_digits[0];
dest->digit_count = 1;
dest->is_negative = op1->is_negative;
bigint_normalize(dest);
return;
}
2017-06-26 11:41:47 -07:00
if (op2->digit_count == 2 && op2_digits[0] == 0 && op2_digits[1] == 1) {
// special case this divisor
bigint_init_unsigned(dest, op1_digits[0]);
dest->is_negative = op1->is_negative;
bigint_normalize(dest);
return;
}
2018-01-15 19:17:22 -08:00
if (op2->digit_count == 1 && op2_digits[0] == 1) {
// X % 1 == 0
bigint_init_unsigned(dest, 0);
return;
2017-06-26 11:41:47 -07:00
}
2018-01-15 19:17:22 -08:00
const BigInt *op1_positive;
BigInt op1_positive_data;
if (op1->is_negative) {
bigint_negate(&op1_positive_data, op1);
op1_positive = &op1_positive_data;
} else {
op1_positive = op1;
}
const BigInt *op2_positive;
BigInt op2_positive_data;
if (op2->is_negative) {
bigint_negate(&op2_positive_data, op2);
op2_positive = &op2_positive_data;
} else {
op2_positive = op2;
}
bigint_unsigned_division(op1_positive, op2_positive, nullptr, dest);
2017-06-26 11:41:47 -07:00
dest->is_negative = op1->is_negative;
bigint_normalize(dest);
}
void bigint_mod(BigInt *dest, const BigInt *op1, const BigInt *op2) {
if (op1->is_negative) {
BigInt first_rem;
bigint_rem(&first_rem, op1, op2);
first_rem.is_negative = !op2->is_negative;
BigInt op2_minus_rem;
bigint_add(&op2_minus_rem, op2, &first_rem);
bigint_rem(dest, &op2_minus_rem, op2);
dest->is_negative = false;
} else {
bigint_rem(dest, op1, op2);
dest->is_negative = false;
}
}
void bigint_or(BigInt *dest, const BigInt *op1, const BigInt *op2) {
if (op1->digit_count == 0) {
return bigint_init_bigint(dest, op2);
}
if (op2->digit_count == 0) {
return bigint_init_bigint(dest, op1);
}
if (op1->is_negative || op2->is_negative) {
// TODO this code path is untested
size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
BigInt twos_comp_op1 = {0};
to_twos_complement(&twos_comp_op1, op1, big_bit_count);
BigInt twos_comp_op2 = {0};
to_twos_complement(&twos_comp_op2, op2, big_bit_count);
BigInt twos_comp_dest = {0};
bigint_or(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
} else {
dest->is_negative = false;
const uint64_t *op1_digits = bigint_ptr(op1);
const uint64_t *op2_digits = bigint_ptr(op2);
if (op1->digit_count == 1 && op2->digit_count == 1) {
dest->digit_count = 1;
dest->data.digit = op1_digits[0] | op2_digits[0];
bigint_normalize(dest);
return;
}
// TODO this code path is untested
uint64_t first_digit = dest->data.digit;
dest->digit_count = max(op1->digit_count, op2->digit_count);
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
dest->data.digits[0] = first_digit;
size_t i = 1;
for (; i < dest->digit_count; i += 1) {
uint64_t digit = 0;
if (i < op1->digit_count) {
digit |= op1_digits[i];
}
if (i < op2->digit_count) {
digit |= op2_digits[i];
}
dest->data.digits[i] = digit;
}
bigint_normalize(dest);
}
}
void bigint_and(BigInt *dest, const BigInt *op1, const BigInt *op2) {
if (op1->digit_count == 0 || op2->digit_count == 0) {
return bigint_init_unsigned(dest, 0);
}
if (op1->is_negative || op2->is_negative) {
// TODO this code path is untested
size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
BigInt twos_comp_op1 = {0};
to_twos_complement(&twos_comp_op1, op1, big_bit_count);
BigInt twos_comp_op2 = {0};
to_twos_complement(&twos_comp_op2, op2, big_bit_count);
BigInt twos_comp_dest = {0};
bigint_and(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
} else {
dest->is_negative = false;
const uint64_t *op1_digits = bigint_ptr(op1);
const uint64_t *op2_digits = bigint_ptr(op2);
if (op1->digit_count == 1 && op2->digit_count == 1) {
dest->digit_count = 1;
dest->data.digit = op1_digits[0] & op2_digits[0];
bigint_normalize(dest);
return;
}
2018-05-05 03:40:29 -07:00
2017-06-26 11:41:47 -07:00
dest->digit_count = max(op1->digit_count, op2->digit_count);
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
2018-05-05 03:40:29 -07:00
size_t i = 0;
2017-06-26 11:41:47 -07:00
for (; i < op1->digit_count && i < op2->digit_count; i += 1) {
dest->data.digits[i] = op1_digits[i] & op2_digits[i];
}
for (; i < dest->digit_count; i += 1) {
dest->data.digits[i] = 0;
}
bigint_normalize(dest);
}
}
void bigint_xor(BigInt *dest, const BigInt *op1, const BigInt *op2) {
2018-01-17 05:00:27 -08:00
if (op1->digit_count == 0) {
return bigint_init_bigint(dest, op2);
}
if (op2->digit_count == 0) {
return bigint_init_bigint(dest, op1);
}
2017-06-26 11:41:47 -07:00
if (op1->is_negative || op2->is_negative) {
// TODO this code path is untested
size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
BigInt twos_comp_op1 = {0};
to_twos_complement(&twos_comp_op1, op1, big_bit_count);
BigInt twos_comp_op2 = {0};
to_twos_complement(&twos_comp_op2, op2, big_bit_count);
BigInt twos_comp_dest = {0};
bigint_xor(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
} else {
dest->is_negative = false;
const uint64_t *op1_digits = bigint_ptr(op1);
const uint64_t *op2_digits = bigint_ptr(op2);
assert(op1->digit_count > 0 && op2->digit_count > 0);
uint64_t first_digit = op1_digits[0] ^ op2_digits[0];
2017-06-26 11:41:47 -07:00
if (op1->digit_count == 1 && op2->digit_count == 1) {
dest->digit_count = 1;
dest->data.digit = first_digit;
2017-06-26 11:41:47 -07:00
bigint_normalize(dest);
return;
}
// TODO this code path is untested
dest->digit_count = max(op1->digit_count, op2->digit_count);
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
dest->data.digits[0] = first_digit;
size_t i = 1;
for (; i < op1->digit_count && i < op2->digit_count; i += 1) {
dest->data.digits[i] = op1_digits[i] ^ op2_digits[i];
}
for (; i < dest->digit_count; i += 1) {
if (i < op1->digit_count) {
dest->data.digits[i] = op1_digits[i];
}
if (i < op2->digit_count) {
dest->data.digits[i] = op2_digits[i];
}
}
bigint_normalize(dest);
}
}
void bigint_shl(BigInt *dest, const BigInt *op1, const BigInt *op2) {
assert(!op2->is_negative);
if (op2->digit_count == 0) {
bigint_init_bigint(dest, op1);
return;
}
if (op1->digit_count == 0) {
bigint_init_unsigned(dest, 0);
return;
}
if (op2->digit_count != 1) {
zig_panic("TODO shift left by amount greater than 64 bit integer");
}
const uint64_t *op1_digits = bigint_ptr(op1);
uint64_t shift_amt = bigint_as_unsigned(op2);
if (op1->digit_count == 1 && shift_amt < 64) {
2017-06-26 11:41:47 -07:00
dest->data.digit = op1_digits[0] << shift_amt;
if (dest->data.digit > op1_digits[0]) {
dest->digit_count = 1;
dest->is_negative = op1->is_negative;
return;
}
}
uint64_t digit_shift_count = shift_amt / 64;
uint64_t leftover_shift_count = shift_amt % 64;
dest->data.digits = allocate<uint64_t>(op1->digit_count + digit_shift_count + 1);
dest->digit_count = digit_shift_count;
uint64_t carry = 0;
for (size_t i = 0; i < op1->digit_count; i += 1) {
uint64_t digit = op1_digits[i];
dest->data.digits[dest->digit_count] = carry | (digit << leftover_shift_count);
dest->digit_count += 1;
if (leftover_shift_count > 0) {
carry = digit >> (64 - leftover_shift_count);
} else {
carry = 0;
}
}
dest->data.digits[dest->digit_count] = carry;
dest->digit_count += 1;
dest->is_negative = op1->is_negative;
bigint_normalize(dest);
}
void bigint_shl_trunc(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
2017-06-26 11:41:47 -07:00
BigInt unwrapped = {0};
bigint_shl(&unwrapped, op1, op2);
bigint_truncate(dest, &unwrapped, bit_count, is_signed);
}
void bigint_shr(BigInt *dest, const BigInt *op1, const BigInt *op2) {
assert(!op2->is_negative);
if (op1->digit_count == 0) {
return bigint_init_unsigned(dest, 0);
}
if (op2->digit_count == 0) {
return bigint_init_bigint(dest, op1);
}
if (op2->digit_count != 1) {
zig_panic("TODO shift right by amount greater than 64 bit integer");
}
const uint64_t *op1_digits = bigint_ptr(op1);
uint64_t shift_amt = bigint_as_unsigned(op2);
if (op1->digit_count == 1) {
dest->data.digit = op1_digits[0] >> shift_amt;
dest->digit_count = 1;
dest->is_negative = op1->is_negative;
bigint_normalize(dest);
return;
}
size_t digit_shift_count = shift_amt / 64;
size_t leftover_shift_count = shift_amt % 64;
if (digit_shift_count >= op1->digit_count) {
return bigint_init_unsigned(dest, 0);
}
dest->digit_count = op1->digit_count - digit_shift_count;
dest->data.digits = allocate<uint64_t>(dest->digit_count);
uint64_t carry = 0;
for (size_t op_digit_index = op1->digit_count - 1;;) {
uint64_t digit = op1_digits[op_digit_index];
size_t dest_digit_index = op_digit_index - digit_shift_count;
dest->data.digits[dest_digit_index] = carry | (digit >> leftover_shift_count);
2018-05-10 03:26:26 -07:00
carry = digit << (64 - leftover_shift_count);
2017-06-26 11:41:47 -07:00
if (dest_digit_index == 0) { break; }
op_digit_index -= 1;
}
dest->is_negative = op1->is_negative;
bigint_normalize(dest);
}
void bigint_negate(BigInt *dest, const BigInt *op) {
bigint_init_bigint(dest, op);
dest->is_negative = !dest->is_negative;
bigint_normalize(dest);
}
void bigint_negate_wrap(BigInt *dest, const BigInt *op, size_t bit_count) {
BigInt zero;
bigint_init_unsigned(&zero, 0);
bigint_sub_wrap(dest, &zero, op, bit_count, true);
}
void bigint_not(BigInt *dest, const BigInt *op, size_t bit_count, bool is_signed) {
if (bit_count == 0) {
bigint_init_unsigned(dest, 0);
return;
}
if (is_signed) {
BigInt twos_comp = {0};
to_twos_complement(&twos_comp, op, bit_count);
BigInt inverted = {0};
bigint_not(&inverted, &twos_comp, bit_count, false);
from_twos_complement(dest, &inverted, bit_count, true);
return;
}
assert(!op->is_negative);
dest->is_negative = false;
const uint64_t *op_digits = bigint_ptr(op);
if (bit_count <= 64) {
dest->digit_count = 1;
if (op->digit_count == 0) {
if (bit_count == 64) {
dest->data.digit = UINT64_MAX;
} else {
dest->data.digit = (1ULL << bit_count) - 1;
}
} else if (op->digit_count == 1) {
dest->data.digit = ~op_digits[0];
if (bit_count != 64) {
uint64_t mask = (1ULL << bit_count) - 1;
dest->data.digit &= mask;
}
}
bigint_normalize(dest);
return;
}
// TODO this code path is untested
dest->digit_count = bit_count / 64;
assert(dest->digit_count >= op->digit_count);
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
size_t i = 0;
for (; i < op->digit_count; i += 1) {
dest->data.digits[i] = ~op_digits[i];
}
for (; i < dest->digit_count; i += 1) {
dest->data.digits[i] = 0xffffffffffffffffULL;
}
size_t digit_index = dest->digit_count - (bit_count / 64) - 1;
size_t digit_bit_index = bit_count % 64;
if (digit_index < dest->digit_count) {
uint64_t mask = (1ULL << digit_bit_index) - 1;
dest->data.digits[digit_index] &= mask;
}
bigint_normalize(dest);
}
void bigint_truncate(BigInt *dest, const BigInt *op, size_t bit_count, bool is_signed) {
BigInt twos_comp;
to_twos_complement(&twos_comp, op, bit_count);
from_twos_complement(dest, &twos_comp, bit_count, is_signed);
}
Cmp bigint_cmp(const BigInt *op1, const BigInt *op2) {
if (op1->is_negative && !op2->is_negative) {
return CmpLT;
} else if (!op1->is_negative && op2->is_negative) {
return CmpGT;
} else if (op1->digit_count > op2->digit_count) {
return op1->is_negative ? CmpLT : CmpGT;
} else if (op2->digit_count > op1->digit_count) {
return op1->is_negative ? CmpGT : CmpLT;
} else if (op1->digit_count == 0) {
return CmpEQ;
}
const uint64_t *op1_digits = bigint_ptr(op1);
const uint64_t *op2_digits = bigint_ptr(op2);
for (size_t i = op1->digit_count - 1; ;) {
uint64_t op1_digit = op1_digits[i];
uint64_t op2_digit = op2_digits[i];
if (op1_digit > op2_digit) {
return op1->is_negative ? CmpLT : CmpGT;
}
if (op1_digit < op2_digit) {
return op1->is_negative ? CmpGT : CmpLT;
}
if (i == 0) {
return CmpEQ;
}
i -= 1;
}
}
void bigint_append_buf(Buf *buf, const BigInt *op, uint64_t base) {
2017-06-26 11:41:47 -07:00
if (op->digit_count == 0) {
buf_append_char(buf, '0');
return;
}
if (op->is_negative) {
buf_append_char(buf, '-');
}
if (op->digit_count == 1 && base == 10) {
buf_appendf(buf, "%" ZIG_PRI_u64, op->data.digit);
return;
}
// TODO this code path is untested
size_t first_digit_index = buf_len(buf);
BigInt digit_bi = {0};
BigInt a1 = {0};
BigInt a2 = {0};
BigInt *a = &a1;
BigInt *other_a = &a2;
bigint_init_bigint(a, op);
BigInt base_bi = {0};
bigint_init_unsigned(&base_bi, 10);
for (;;) {
bigint_rem(&digit_bi, a, &base_bi);
uint8_t digit = bigint_as_unsigned(&digit_bi);
buf_append_char(buf, digit_to_char(digit, false));
bigint_div_trunc(other_a, a, &base_bi);
{
BigInt *tmp = a;
a = other_a;
other_a = tmp;
}
if (bigint_cmp_zero(a) == CmpEQ) {
break;
}
}
// reverse
for (size_t i = first_digit_index; i < buf_len(buf); i += 1) {
size_t other_i = buf_len(buf) + first_digit_index - i - 1;
uint8_t tmp = buf_ptr(buf)[i];
buf_ptr(buf)[i] = buf_ptr(buf)[other_i];
buf_ptr(buf)[other_i] = tmp;
}
}
size_t bigint_ctz(const BigInt *bi, size_t bit_count) {
if (bit_count == 0)
return 0;
if (bi->digit_count == 0)
return bit_count;
BigInt twos_comp = {0};
to_twos_complement(&twos_comp, bi, bit_count);
size_t count = 0;
for (size_t i = 0; i < bit_count; i += 1) {
if (bit_at_index(&twos_comp, i))
return count;
count += 1;
}
return count;
}
size_t bigint_clz(const BigInt *bi, size_t bit_count) {
if (bi->is_negative || bit_count == 0)
return 0;
if (bi->digit_count == 0)
return bit_count;
size_t count = 0;
for (size_t i = bit_count - 1;;) {
if (bit_at_index(bi, i))
return count;
count += 1;
if (i == 0) break;
i -= 1;
}
return count;
}
uint64_t bigint_as_unsigned(const BigInt *bigint) {
assert(!bigint->is_negative);
if (bigint->digit_count == 0) {
return 0;
} else if (bigint->digit_count == 1) {
return bigint->data.digit;
} else {
zig_unreachable();
}
}
int64_t bigint_as_signed(const BigInt *bigint) {
if (bigint->digit_count == 0) {
return 0;
} else if (bigint->digit_count == 1) {
if (bigint->is_negative) {
// TODO this code path is untested
if (bigint->data.digit <= 9223372036854775808ULL) {
return (-((int64_t)(bigint->data.digit - 1))) - 1;
} else {
zig_unreachable();
}
} else {
return bigint->data.digit;
}
} else {
zig_unreachable();
}
}
Cmp bigint_cmp_zero(const BigInt *op) {
if (op->digit_count == 0) {
return CmpEQ;
}
return op->is_negative ? CmpLT : CmpGT;
}
uint32_t bigint_hash(BigInt x) {
if (x.digit_count == 0) {
return 0;
} else {
return bigint_ptr(&x)[0];
}
}
bool bigint_eql(BigInt a, BigInt b) {
return bigint_cmp(&a, &b) == CmpEQ;
}
void bigint_incr(BigInt *x) {
if (x->digit_count == 0) {
bigint_init_unsigned(x, 1);
return;
}
if (x->digit_count == 1 && x->data.digit != UINT64_MAX) {
x->data.digit += 1;
return;
}
BigInt copy;
bigint_init_bigint(&copy, x);
BigInt one;
bigint_init_unsigned(&one, 1);
bigint_add(x, &copy, &one);
}