2017-06-26 11:41:47 -07:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2017 Andrew Kelley
|
|
|
|
*
|
|
|
|
* This file is part of zig, which is MIT licensed.
|
|
|
|
* See http://opensource.org/licenses/MIT
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "bigfloat.hpp"
|
|
|
|
#include "bigint.hpp"
|
|
|
|
#include "buffer.hpp"
|
|
|
|
#include "list.hpp"
|
|
|
|
#include "os.hpp"
|
2017-09-13 22:44:22 -07:00
|
|
|
#include "softfloat.hpp"
|
2017-06-26 11:41:47 -07:00
|
|
|
|
2018-01-15 19:17:22 -08:00
|
|
|
#include <limits>
|
|
|
|
#include <algorithm>
|
|
|
|
|
2017-06-26 11:41:47 -07:00
|
|
|
static void bigint_normalize(BigInt *dest) {
|
|
|
|
const uint64_t *digits = bigint_ptr(dest);
|
|
|
|
|
|
|
|
size_t last_nonzero_digit = SIZE_MAX;
|
|
|
|
for (size_t i = 0; i < dest->digit_count; i += 1) {
|
|
|
|
uint64_t digit = digits[i];
|
|
|
|
if (digit != 0) {
|
|
|
|
last_nonzero_digit = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (last_nonzero_digit == SIZE_MAX) {
|
|
|
|
dest->is_negative = false;
|
|
|
|
dest->digit_count = 0;
|
|
|
|
} else {
|
|
|
|
dest->digit_count = last_nonzero_digit + 1;
|
|
|
|
if (last_nonzero_digit == 0) {
|
|
|
|
dest->data.digit = digits[0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint8_t digit_to_char(uint8_t digit, bool uppercase) {
|
|
|
|
if (digit <= 9) {
|
|
|
|
return digit + '0';
|
|
|
|
} else if (digit <= 35) {
|
|
|
|
return digit + (uppercase ? 'A' : 'a');
|
|
|
|
} else {
|
|
|
|
zig_unreachable();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t bigint_bits_needed(const BigInt *op) {
|
|
|
|
size_t full_bits = op->digit_count * 64;
|
|
|
|
size_t leading_zero_count = bigint_clz(op, full_bits);
|
|
|
|
size_t bits_needed = full_bits - leading_zero_count;
|
|
|
|
return bits_needed + op->is_negative;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void to_twos_complement(BigInt *dest, const BigInt *op, size_t bit_count) {
|
|
|
|
if (bit_count == 0 || op->digit_count == 0) {
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (op->is_negative) {
|
|
|
|
BigInt negated = {0};
|
|
|
|
bigint_negate(&negated, op);
|
|
|
|
|
|
|
|
BigInt inverted = {0};
|
|
|
|
bigint_not(&inverted, &negated, bit_count, false);
|
|
|
|
|
|
|
|
BigInt one = {0};
|
|
|
|
bigint_init_unsigned(&one, 1);
|
|
|
|
|
|
|
|
bigint_add(dest, &inverted, &one);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
dest->is_negative = false;
|
|
|
|
const uint64_t *op_digits = bigint_ptr(op);
|
|
|
|
if (op->digit_count == 1) {
|
|
|
|
dest->data.digit = op_digits[0];
|
|
|
|
if (bit_count < 64) {
|
|
|
|
dest->data.digit &= (1ULL << bit_count) - 1;
|
|
|
|
}
|
|
|
|
dest->digit_count = 1;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
size_t digits_to_copy = bit_count / 64;
|
|
|
|
size_t leftover_bits = bit_count % 64;
|
|
|
|
dest->digit_count = digits_to_copy + ((leftover_bits == 0) ? 0 : 1);
|
|
|
|
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
|
|
|
|
for (size_t i = 0; i < digits_to_copy; i += 1) {
|
|
|
|
uint64_t digit = (i < op->digit_count) ? op_digits[i] : 0;
|
|
|
|
dest->data.digits[i] = digit;
|
|
|
|
}
|
|
|
|
if (leftover_bits != 0) {
|
|
|
|
uint64_t digit = (digits_to_copy < op->digit_count) ? op_digits[digits_to_copy] : 0;
|
|
|
|
dest->data.digits[digits_to_copy] = digit & ((1ULL << leftover_bits) - 1);
|
|
|
|
}
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool bit_at_index(const BigInt *bi, size_t index) {
|
2017-08-17 14:14:35 -07:00
|
|
|
size_t digit_index = index / 64;
|
|
|
|
if (digit_index >= bi->digit_count)
|
|
|
|
return false;
|
2017-06-26 11:41:47 -07:00
|
|
|
size_t digit_bit_index = index % 64;
|
|
|
|
const uint64_t *digits = bigint_ptr(bi);
|
|
|
|
uint64_t digit = digits[digit_index];
|
|
|
|
return ((digit >> digit_bit_index) & 0x1) == 0x1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void from_twos_complement(BigInt *dest, const BigInt *src, size_t bit_count, bool is_signed) {
|
|
|
|
assert(!src->is_negative);
|
|
|
|
|
|
|
|
if (bit_count == 0 || src->digit_count == 0) {
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_signed && bit_at_index(src, bit_count - 1)) {
|
|
|
|
BigInt negative_one = {0};
|
|
|
|
bigint_init_signed(&negative_one, -1);
|
|
|
|
|
|
|
|
BigInt minus_one = {0};
|
|
|
|
bigint_add(&minus_one, src, &negative_one);
|
|
|
|
|
|
|
|
BigInt inverted = {0};
|
|
|
|
bigint_not(&inverted, &minus_one, bit_count, false);
|
|
|
|
|
|
|
|
bigint_negate(dest, &inverted);
|
|
|
|
return;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
bigint_init_bigint(dest, src);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_init_unsigned(BigInt *dest, uint64_t x) {
|
|
|
|
if (x == 0) {
|
|
|
|
dest->digit_count = 0;
|
|
|
|
dest->is_negative = false;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->data.digit = x;
|
|
|
|
dest->is_negative = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_init_signed(BigInt *dest, int64_t x) {
|
|
|
|
if (x >= 0) {
|
|
|
|
return bigint_init_unsigned(dest, x);
|
|
|
|
}
|
|
|
|
dest->is_negative = true;
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->data.digit = ((uint64_t)(-(x + 1))) + 1;
|
|
|
|
}
|
|
|
|
|
2017-09-02 01:11:23 -07:00
|
|
|
void bigint_init_data(BigInt *dest, const uint64_t *digits, size_t digit_count, bool is_negative) {
|
|
|
|
if (digit_count == 0) {
|
|
|
|
return bigint_init_unsigned(dest, 0);
|
|
|
|
} else if (digit_count == 1) {
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->data.digit = digits[0];
|
|
|
|
dest->is_negative = is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
dest->digit_count = digit_count;
|
|
|
|
dest->is_negative = is_negative;
|
|
|
|
dest->data.digits = allocate_nonzero<uint64_t>(digit_count);
|
|
|
|
memcpy(dest->data.digits, digits, sizeof(uint64_t) * digit_count);
|
|
|
|
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
|
2017-06-26 11:41:47 -07:00
|
|
|
void bigint_init_bigint(BigInt *dest, const BigInt *src) {
|
|
|
|
if (src->digit_count == 0) {
|
|
|
|
return bigint_init_unsigned(dest, 0);
|
|
|
|
} else if (src->digit_count == 1) {
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->data.digit = src->data.digit;
|
|
|
|
dest->is_negative = src->is_negative;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
dest->is_negative = src->is_negative;
|
|
|
|
dest->digit_count = src->digit_count;
|
|
|
|
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
|
|
|
|
memcpy(dest->data.digits, src->data.digits, sizeof(uint64_t) * dest->digit_count);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_init_bigfloat(BigInt *dest, const BigFloat *op) {
|
2017-09-13 22:44:22 -07:00
|
|
|
float128_t zero;
|
|
|
|
ui32_to_f128M(0, &zero);
|
|
|
|
|
|
|
|
dest->is_negative = f128M_lt(&op->value, &zero);
|
|
|
|
float128_t abs_val;
|
|
|
|
if (dest->is_negative) {
|
|
|
|
f128M_sub(&zero, &op->value, &abs_val);
|
2017-06-26 11:41:47 -07:00
|
|
|
} else {
|
2017-09-13 22:44:22 -07:00
|
|
|
memcpy(&abs_val, &op->value, sizeof(float128_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
float128_t max_u64;
|
|
|
|
ui64_to_f128M(UINT64_MAX, &max_u64);
|
|
|
|
if (f128M_le(&abs_val, &max_u64)) {
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->data.digit = f128M_to_ui64(&op->value, softfloat_round_minMag, false);
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
2017-06-26 11:41:47 -07:00
|
|
|
}
|
2017-09-13 22:44:22 -07:00
|
|
|
|
|
|
|
float128_t amt;
|
|
|
|
f128M_div(&abs_val, &max_u64, &amt);
|
|
|
|
float128_t remainder;
|
|
|
|
f128M_rem(&abs_val, &max_u64, &remainder);
|
|
|
|
|
|
|
|
dest->digit_count = 2;
|
|
|
|
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
|
|
|
|
dest->data.digits[0] = f128M_to_ui64(&remainder, softfloat_round_minMag, false);
|
|
|
|
dest->data.digits[1] = f128M_to_ui64(&amt, softfloat_round_minMag, false);
|
|
|
|
bigint_normalize(dest);
|
2017-06-26 11:41:47 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
bool bigint_fits_in_bits(const BigInt *bn, size_t bit_count, bool is_signed) {
|
|
|
|
assert(bn->digit_count != 1 || bn->data.digit != 0);
|
|
|
|
if (bit_count == 0) {
|
|
|
|
return bigint_cmp_zero(bn) == CmpEQ;
|
|
|
|
}
|
|
|
|
if (bn->digit_count == 0) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!is_signed) {
|
|
|
|
size_t full_bits = bn->digit_count * 64;
|
|
|
|
size_t leading_zero_count = bigint_clz(bn, full_bits);
|
|
|
|
return bit_count >= full_bits - leading_zero_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
BigInt one = {0};
|
|
|
|
bigint_init_unsigned(&one, 1);
|
|
|
|
|
|
|
|
BigInt shl_amt = {0};
|
|
|
|
bigint_init_unsigned(&shl_amt, bit_count - 1);
|
|
|
|
|
|
|
|
BigInt max_value_plus_one = {0};
|
|
|
|
bigint_shl(&max_value_plus_one, &one, &shl_amt);
|
|
|
|
|
|
|
|
BigInt max_value = {0};
|
|
|
|
bigint_sub(&max_value, &max_value_plus_one, &one);
|
|
|
|
|
|
|
|
BigInt min_value = {0};
|
|
|
|
bigint_negate(&min_value, &max_value_plus_one);
|
|
|
|
|
|
|
|
Cmp min_cmp = bigint_cmp(bn, &min_value);
|
|
|
|
Cmp max_cmp = bigint_cmp(bn, &max_value);
|
|
|
|
|
|
|
|
return (min_cmp == CmpGT || min_cmp == CmpEQ) && (max_cmp == CmpLT || max_cmp == CmpEQ);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_write_twos_complement(const BigInt *big_int, uint8_t *buf, size_t bit_count, bool is_big_endian) {
|
|
|
|
if (bit_count == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
BigInt twos_comp = {0};
|
|
|
|
to_twos_complement(&twos_comp, big_int, bit_count);
|
|
|
|
|
|
|
|
const uint64_t *twos_comp_digits = bigint_ptr(&twos_comp);
|
|
|
|
|
|
|
|
size_t bits_in_last_digit = bit_count % 64;
|
2017-08-17 19:52:12 -07:00
|
|
|
if (bits_in_last_digit == 0) bits_in_last_digit = 64;
|
2017-06-26 11:41:47 -07:00
|
|
|
size_t bytes_in_last_digit = (bits_in_last_digit + 7) / 8;
|
|
|
|
size_t unwritten_byte_count = 8 - bytes_in_last_digit;
|
|
|
|
|
|
|
|
if (is_big_endian) {
|
|
|
|
size_t last_digit_index = (bit_count - 1) / 64;
|
|
|
|
size_t digit_index = last_digit_index;
|
|
|
|
size_t buf_index = 0;
|
|
|
|
for (;;) {
|
|
|
|
uint64_t x = (digit_index < twos_comp.digit_count) ? twos_comp_digits[digit_index] : 0;
|
|
|
|
|
|
|
|
for (size_t byte_index = 7;;) {
|
|
|
|
uint8_t byte = x & 0xff;
|
|
|
|
if (digit_index == last_digit_index) {
|
|
|
|
buf[buf_index + byte_index - unwritten_byte_count] = byte;
|
|
|
|
if (byte_index == unwritten_byte_count) break;
|
|
|
|
} else {
|
|
|
|
buf[buf_index + byte_index] = byte;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (byte_index == 0) break;
|
|
|
|
byte_index -= 1;
|
|
|
|
x >>= 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (digit_index == 0) break;
|
|
|
|
digit_index -= 1;
|
|
|
|
if (digit_index == last_digit_index) {
|
|
|
|
buf_index += bytes_in_last_digit;
|
|
|
|
} else {
|
|
|
|
buf_index += 8;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
size_t digit_count = (bit_count + 63) / 64;
|
|
|
|
size_t buf_index = 0;
|
|
|
|
for (size_t digit_index = 0; digit_index < digit_count; digit_index += 1) {
|
|
|
|
uint64_t x = (digit_index < twos_comp.digit_count) ? twos_comp_digits[digit_index] : 0;
|
|
|
|
|
2017-08-17 19:52:12 -07:00
|
|
|
for (size_t byte_index = 0;
|
|
|
|
byte_index < 8 && (digit_index + 1 < digit_count || byte_index < bytes_in_last_digit);
|
|
|
|
byte_index += 1)
|
|
|
|
{
|
2017-06-26 11:41:47 -07:00
|
|
|
uint8_t byte = x & 0xff;
|
|
|
|
buf[buf_index] = byte;
|
|
|
|
buf_index += 1;
|
|
|
|
x >>= 8;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void bigint_read_twos_complement(BigInt *dest, const uint8_t *buf, size_t bit_count, bool is_big_endian,
|
|
|
|
bool is_signed)
|
|
|
|
{
|
|
|
|
if (bit_count == 0) {
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
dest->digit_count = (bit_count + 63) / 64;
|
|
|
|
uint64_t *digits;
|
|
|
|
if (dest->digit_count == 1) {
|
|
|
|
digits = &dest->data.digit;
|
|
|
|
} else {
|
|
|
|
digits = allocate_nonzero<uint64_t>(dest->digit_count);
|
|
|
|
dest->data.digits = digits;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t bits_in_last_digit = bit_count % 64;
|
|
|
|
if (bits_in_last_digit == 0) {
|
|
|
|
bits_in_last_digit = 64;
|
|
|
|
}
|
|
|
|
size_t bytes_in_last_digit = (bits_in_last_digit + 7) / 8;
|
|
|
|
size_t unread_byte_count = 8 - bytes_in_last_digit;
|
|
|
|
|
|
|
|
if (is_big_endian) {
|
|
|
|
size_t buf_index = 0;
|
|
|
|
uint64_t digit = 0;
|
|
|
|
for (size_t byte_index = unread_byte_count; byte_index < 8; byte_index += 1) {
|
|
|
|
uint8_t byte = buf[buf_index];
|
|
|
|
buf_index += 1;
|
|
|
|
digit <<= 8;
|
|
|
|
digit |= byte;
|
|
|
|
}
|
|
|
|
digits[dest->digit_count - 1] = digit;
|
|
|
|
for (size_t digit_index = 1; digit_index < dest->digit_count; digit_index += 1) {
|
|
|
|
digit = 0;
|
|
|
|
for (size_t byte_index = 0; byte_index < 8; byte_index += 1) {
|
|
|
|
uint8_t byte = buf[buf_index];
|
|
|
|
buf_index += 1;
|
|
|
|
digit <<= 8;
|
|
|
|
digit |= byte;
|
|
|
|
}
|
|
|
|
digits[dest->digit_count - 1 - digit_index] = digit;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
size_t buf_index = 0;
|
|
|
|
for (size_t digit_index = 0; digit_index < dest->digit_count; digit_index += 1) {
|
|
|
|
uint64_t digit = 0;
|
|
|
|
size_t end_byte_index = (digit_index == dest->digit_count - 1) ? bytes_in_last_digit : 8;
|
|
|
|
for (size_t byte_index = 0; byte_index < end_byte_index; byte_index += 1) {
|
|
|
|
uint64_t byte = buf[buf_index];
|
|
|
|
buf_index += 1;
|
|
|
|
|
|
|
|
digit |= byte << (8 * byte_index);
|
|
|
|
}
|
|
|
|
digits[digit_index] = digit;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_signed) {
|
|
|
|
bigint_normalize(dest);
|
|
|
|
BigInt tmp = {0};
|
|
|
|
bigint_init_bigint(&tmp, dest);
|
|
|
|
from_twos_complement(dest, &tmp, bit_count, true);
|
|
|
|
} else {
|
|
|
|
dest->is_negative = false;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-09-12 21:17:19 -07:00
|
|
|
#if defined(_MSC_VER)
|
2017-09-10 13:05:18 -07:00
|
|
|
static bool add_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
|
|
|
|
*result = op1 + op2;
|
2017-09-12 21:17:19 -07:00
|
|
|
return *result < op1 || *result < op2;
|
2017-09-10 13:05:18 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool sub_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
|
|
|
|
*result = op1 - op2;
|
2017-09-12 21:17:19 -07:00
|
|
|
return *result > op1;
|
2017-09-10 13:05:18 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
bool mul_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
|
|
|
|
*result = op1 * op2;
|
2017-09-12 21:17:19 -07:00
|
|
|
|
|
|
|
if (op1 == 0 || op2 == 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (op1 > UINT64_MAX / op2)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
if (op2 > UINT64_MAX / op1)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
2017-09-10 13:05:18 -07:00
|
|
|
}
|
|
|
|
#else
|
2017-06-26 11:41:47 -07:00
|
|
|
static bool add_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
|
|
|
|
return __builtin_uaddll_overflow((unsigned long long)op1, (unsigned long long)op2,
|
|
|
|
(unsigned long long *)result);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool sub_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
|
|
|
|
return __builtin_usubll_overflow((unsigned long long)op1, (unsigned long long)op2,
|
|
|
|
(unsigned long long *)result);
|
|
|
|
}
|
|
|
|
|
2017-09-10 13:05:18 -07:00
|
|
|
bool mul_u64_overflow(uint64_t op1, uint64_t op2, uint64_t *result) {
|
2017-06-26 11:41:47 -07:00
|
|
|
return __builtin_umulll_overflow((unsigned long long)op1, (unsigned long long)op2,
|
|
|
|
(unsigned long long *)result);
|
|
|
|
}
|
2017-09-10 13:05:18 -07:00
|
|
|
#endif
|
2017-06-26 11:41:47 -07:00
|
|
|
|
|
|
|
void bigint_add(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
if (op1->digit_count == 0) {
|
|
|
|
return bigint_init_bigint(dest, op2);
|
|
|
|
}
|
|
|
|
if (op2->digit_count == 0) {
|
|
|
|
return bigint_init_bigint(dest, op1);
|
|
|
|
}
|
|
|
|
if (op1->is_negative == op2->is_negative) {
|
|
|
|
dest->is_negative = op1->is_negative;
|
|
|
|
|
|
|
|
const uint64_t *op1_digits = bigint_ptr(op1);
|
|
|
|
const uint64_t *op2_digits = bigint_ptr(op2);
|
2017-09-10 13:05:18 -07:00
|
|
|
bool overflow = add_u64_overflow(op1_digits[0], op2_digits[0], &dest->data.digit);
|
2017-06-26 11:41:47 -07:00
|
|
|
if (overflow == 0 && op1->digit_count == 1 && op2->digit_count == 1) {
|
|
|
|
dest->digit_count = 1;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
size_t i = 1;
|
|
|
|
uint64_t first_digit = dest->data.digit;
|
|
|
|
dest->data.digits = allocate_nonzero<uint64_t>(max(op1->digit_count, op2->digit_count) + 1);
|
|
|
|
dest->data.digits[0] = first_digit;
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
bool found_digit = false;
|
|
|
|
uint64_t x = overflow;
|
|
|
|
overflow = 0;
|
|
|
|
|
|
|
|
if (i < op1->digit_count) {
|
|
|
|
found_digit = true;
|
|
|
|
uint64_t digit = op1_digits[i];
|
|
|
|
overflow += add_u64_overflow(x, digit, &x);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i < op2->digit_count) {
|
|
|
|
found_digit = true;
|
|
|
|
uint64_t digit = op2_digits[i];
|
|
|
|
overflow += add_u64_overflow(x, digit, &x);
|
|
|
|
}
|
|
|
|
|
|
|
|
dest->data.digits[i] = x;
|
2017-08-16 16:07:35 -07:00
|
|
|
i += 1;
|
2017-06-26 11:41:47 -07:00
|
|
|
|
|
|
|
if (!found_digit) {
|
2017-08-16 16:07:35 -07:00
|
|
|
dest->digit_count = i;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
2017-06-26 11:41:47 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const BigInt *op_pos;
|
|
|
|
const BigInt *op_neg;
|
|
|
|
if (op1->is_negative) {
|
|
|
|
op_neg = op1;
|
|
|
|
op_pos = op2;
|
|
|
|
} else {
|
|
|
|
op_pos = op1;
|
|
|
|
op_neg = op2;
|
|
|
|
}
|
|
|
|
|
|
|
|
BigInt op_neg_abs = {0};
|
|
|
|
bigint_negate(&op_neg_abs, op_neg);
|
|
|
|
const BigInt *bigger_op;
|
|
|
|
const BigInt *smaller_op;
|
|
|
|
switch (bigint_cmp(op_pos, &op_neg_abs)) {
|
|
|
|
case CmpEQ:
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
return;
|
|
|
|
case CmpLT:
|
|
|
|
bigger_op = &op_neg_abs;
|
|
|
|
smaller_op = op_pos;
|
|
|
|
dest->is_negative = true;
|
|
|
|
break;
|
|
|
|
case CmpGT:
|
|
|
|
bigger_op = op_pos;
|
|
|
|
smaller_op = &op_neg_abs;
|
|
|
|
dest->is_negative = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
const uint64_t *bigger_op_digits = bigint_ptr(bigger_op);
|
|
|
|
const uint64_t *smaller_op_digits = bigint_ptr(smaller_op);
|
|
|
|
uint64_t overflow = sub_u64_overflow(bigger_op_digits[0], smaller_op_digits[0], &dest->data.digit);
|
|
|
|
if (overflow == 0 && bigger_op->digit_count == 1 && smaller_op->digit_count == 1) {
|
|
|
|
dest->digit_count = 1;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uint64_t first_digit = dest->data.digit;
|
|
|
|
dest->data.digits = allocate_nonzero<uint64_t>(bigger_op->digit_count);
|
|
|
|
dest->data.digits[0] = first_digit;
|
|
|
|
size_t i = 1;
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
bool found_digit = false;
|
|
|
|
uint64_t x = bigger_op_digits[i];
|
|
|
|
uint64_t prev_overflow = overflow;
|
|
|
|
overflow = 0;
|
|
|
|
|
|
|
|
if (i < smaller_op->digit_count) {
|
|
|
|
found_digit = true;
|
|
|
|
uint64_t digit = smaller_op_digits[i];
|
|
|
|
overflow += sub_u64_overflow(x, digit, &x);
|
|
|
|
}
|
|
|
|
if (sub_u64_overflow(x, prev_overflow, &x)) {
|
|
|
|
found_digit = true;
|
|
|
|
overflow += 1;
|
|
|
|
}
|
|
|
|
dest->data.digits[i] = x;
|
|
|
|
i += 1;
|
|
|
|
|
2018-01-15 19:17:22 -08:00
|
|
|
if (!found_digit || i >= bigger_op->digit_count)
|
2017-06-26 11:41:47 -07:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
assert(overflow == 0);
|
|
|
|
dest->digit_count = i;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_add_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
|
|
|
|
BigInt unwrapped = {0};
|
|
|
|
bigint_add(&unwrapped, op1, op2);
|
|
|
|
bigint_truncate(dest, &unwrapped, bit_count, is_signed);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_sub(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
BigInt op2_negated = {0};
|
|
|
|
bigint_negate(&op2_negated, op2);
|
|
|
|
return bigint_add(dest, op1, &op2_negated);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_sub_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
|
|
|
|
BigInt op2_negated = {0};
|
|
|
|
bigint_negate(&op2_negated, op2);
|
|
|
|
return bigint_add_wrap(dest, op1, &op2_negated, bit_count, is_signed);
|
|
|
|
}
|
|
|
|
|
2017-09-13 23:48:16 -07:00
|
|
|
static void mul_overflow(uint64_t op1, uint64_t op2, uint64_t *lo, uint64_t *hi) {
|
|
|
|
uint64_t u1 = (op1 & 0xffffffff);
|
|
|
|
uint64_t v1 = (op2 & 0xffffffff);
|
|
|
|
uint64_t t = (u1 * v1);
|
|
|
|
uint64_t w3 = (t & 0xffffffff);
|
|
|
|
uint64_t k = (t >> 32);
|
|
|
|
|
|
|
|
op1 >>= 32;
|
|
|
|
t = (op1 * v1) + k;
|
|
|
|
k = (t & 0xffffffff);
|
|
|
|
uint64_t w1 = (t >> 32);
|
|
|
|
|
|
|
|
op2 >>= 32;
|
|
|
|
t = (u1 * op2) + k;
|
|
|
|
k = (t >> 32);
|
2017-06-26 11:41:47 -07:00
|
|
|
|
2017-09-13 23:48:16 -07:00
|
|
|
*hi = (op1 * op2) + w1 + k;
|
|
|
|
*lo = (t << 32) + w3;
|
2017-08-16 16:07:35 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
static void mul_scalar(BigInt *dest, const BigInt *op, uint64_t scalar) {
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
|
|
|
|
BigInt bi_64;
|
|
|
|
bigint_init_unsigned(&bi_64, 64);
|
|
|
|
|
|
|
|
const uint64_t *op_digits = bigint_ptr(op);
|
|
|
|
size_t i = op->digit_count - 1;
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
BigInt shifted;
|
|
|
|
bigint_shl(&shifted, dest, &bi_64);
|
|
|
|
|
|
|
|
uint64_t result_scalar;
|
|
|
|
uint64_t carry_scalar;
|
|
|
|
mul_overflow(scalar, op_digits[i], &result_scalar, &carry_scalar);
|
|
|
|
|
|
|
|
BigInt result;
|
|
|
|
bigint_init_unsigned(&result, result_scalar);
|
|
|
|
|
|
|
|
BigInt carry;
|
|
|
|
bigint_init_unsigned(&carry, carry_scalar);
|
|
|
|
|
|
|
|
BigInt carry_shifted;
|
|
|
|
bigint_shl(&carry_shifted, &carry, &bi_64);
|
|
|
|
|
|
|
|
BigInt tmp;
|
|
|
|
bigint_add(&tmp, &shifted, &carry_shifted);
|
|
|
|
|
|
|
|
bigint_add(dest, &tmp, &result);
|
|
|
|
|
|
|
|
if (i == 0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
i -= 1;
|
|
|
|
}
|
2017-06-26 11:41:47 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_mul(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
if (op1->digit_count == 0 || op2->digit_count == 0) {
|
|
|
|
return bigint_init_unsigned(dest, 0);
|
|
|
|
}
|
|
|
|
const uint64_t *op1_digits = bigint_ptr(op1);
|
|
|
|
const uint64_t *op2_digits = bigint_ptr(op2);
|
|
|
|
|
|
|
|
uint64_t carry;
|
|
|
|
mul_overflow(op1_digits[0], op2_digits[0], &dest->data.digit, &carry);
|
|
|
|
if (carry == 0 && op1->digit_count == 1 && op2->digit_count == 1) {
|
|
|
|
dest->is_negative = (op1->is_negative != op2->is_negative);
|
|
|
|
dest->digit_count = 1;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
2017-08-16 16:07:35 -07:00
|
|
|
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
|
|
|
|
BigInt bi_64;
|
|
|
|
bigint_init_unsigned(&bi_64, 64);
|
|
|
|
|
|
|
|
size_t i = op2->digit_count - 1;
|
|
|
|
for (;;) {
|
|
|
|
BigInt shifted;
|
|
|
|
bigint_shl(&shifted, dest, &bi_64);
|
|
|
|
|
|
|
|
BigInt scalar_result;
|
|
|
|
mul_scalar(&scalar_result, op1, op2_digits[i]);
|
|
|
|
|
|
|
|
bigint_add(dest, &scalar_result, &shifted);
|
|
|
|
|
|
|
|
if (i == 0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
i -= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
dest->is_negative = (op1->is_negative != op2->is_negative);
|
|
|
|
bigint_normalize(dest);
|
2017-06-26 11:41:47 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_mul_wrap(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
|
|
|
|
BigInt unwrapped = {0};
|
|
|
|
bigint_mul(&unwrapped, op1, op2);
|
|
|
|
bigint_truncate(dest, &unwrapped, bit_count, is_signed);
|
|
|
|
}
|
|
|
|
|
2018-01-15 19:17:22 -08:00
|
|
|
enum ZeroBehavior {
|
|
|
|
/// \brief The returned value is undefined.
|
|
|
|
ZB_Undefined,
|
|
|
|
/// \brief The returned value is numeric_limits<T>::max()
|
|
|
|
ZB_Max,
|
|
|
|
/// \brief The returned value is numeric_limits<T>::digits
|
|
|
|
ZB_Width
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
|
|
|
|
static std::size_t count(T Val, ZeroBehavior) {
|
|
|
|
if (!Val)
|
|
|
|
return std::numeric_limits<T>::digits;
|
|
|
|
|
|
|
|
// Bisection method.
|
|
|
|
std::size_t ZeroBits = 0;
|
|
|
|
for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
|
|
|
|
T Tmp = Val >> Shift;
|
|
|
|
if (Tmp)
|
|
|
|
Val = Tmp;
|
|
|
|
else
|
|
|
|
ZeroBits |= Shift;
|
|
|
|
}
|
|
|
|
return ZeroBits;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
#if __GNUC__ >= 4 || defined(_MSC_VER)
|
|
|
|
template <typename T> struct LeadingZerosCounter<T, 4> {
|
|
|
|
static std::size_t count(T Val, ZeroBehavior ZB) {
|
|
|
|
if (ZB != ZB_Undefined && Val == 0)
|
|
|
|
return 32;
|
|
|
|
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
unsigned long Index;
|
|
|
|
_BitScanReverse(&Index, Val);
|
|
|
|
return Index ^ 31;
|
|
|
|
#else
|
|
|
|
return __builtin_clz(Val);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
#if !defined(_MSC_VER) || defined(_M_X64)
|
|
|
|
template <typename T> struct LeadingZerosCounter<T, 8> {
|
|
|
|
static std::size_t count(T Val, ZeroBehavior ZB) {
|
|
|
|
if (ZB != ZB_Undefined && Val == 0)
|
|
|
|
return 64;
|
|
|
|
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
unsigned long Index;
|
|
|
|
_BitScanReverse64(&Index, Val);
|
|
|
|
return Index ^ 63;
|
|
|
|
#else
|
|
|
|
return __builtin_clzll(Val);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/// \brief Count number of 0's from the most significant bit to the least
|
|
|
|
/// stopping at the first 1.
|
|
|
|
///
|
|
|
|
/// Only unsigned integral types are allowed.
|
|
|
|
///
|
|
|
|
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
|
|
|
|
/// valid arguments.
|
|
|
|
template <typename T>
|
|
|
|
std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
|
|
|
|
static_assert(std::numeric_limits<T>::is_integer &&
|
|
|
|
!std::numeric_limits<T>::is_signed,
|
|
|
|
"Only unsigned integral types are allowed.");
|
|
|
|
return LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Make a 64-bit integer from a high / low pair of 32-bit integers.
|
|
|
|
constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
|
|
|
|
return ((uint64_t)High << 32) | (uint64_t)Low;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return the high 32 bits of a 64 bit value.
|
|
|
|
constexpr inline uint32_t Hi_32(uint64_t Value) {
|
|
|
|
return static_cast<uint32_t>(Value >> 32);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return the low 32 bits of a 64 bit value.
|
|
|
|
constexpr inline uint32_t Lo_32(uint64_t Value) {
|
|
|
|
return static_cast<uint32_t>(Value);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
|
|
|
|
/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
|
|
|
|
/// variables here have the same names as in the algorithm. Comments explain
|
|
|
|
/// the algorithm and any deviation from it.
|
|
|
|
static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
|
|
|
|
unsigned m, unsigned n)
|
|
|
|
{
|
|
|
|
assert(u && "Must provide dividend");
|
|
|
|
assert(v && "Must provide divisor");
|
|
|
|
assert(q && "Must provide quotient");
|
|
|
|
assert(u != v && u != q && v != q && "Must use different memory");
|
|
|
|
assert(n>1 && "n must be > 1");
|
|
|
|
|
|
|
|
// b denotes the base of the number system. In our case b is 2^32.
|
|
|
|
const uint64_t b = uint64_t(1) << 32;
|
|
|
|
|
|
|
|
// D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
|
|
|
|
// u and v by d. Note that we have taken Knuth's advice here to use a power
|
|
|
|
// of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
|
|
|
|
// 2 allows us to shift instead of multiply and it is easy to determine the
|
|
|
|
// shift amount from the leading zeros. We are basically normalizing the u
|
|
|
|
// and v so that its high bits are shifted to the top of v's range without
|
|
|
|
// overflow. Note that this can require an extra word in u so that u must
|
|
|
|
// be of length m+n+1.
|
|
|
|
unsigned shift = countLeadingZeros(v[n-1]);
|
|
|
|
uint32_t v_carry = 0;
|
|
|
|
uint32_t u_carry = 0;
|
|
|
|
if (shift) {
|
|
|
|
for (unsigned i = 0; i < m+n; ++i) {
|
|
|
|
uint32_t u_tmp = u[i] >> (32 - shift);
|
|
|
|
u[i] = (u[i] << shift) | u_carry;
|
|
|
|
u_carry = u_tmp;
|
|
|
|
}
|
|
|
|
for (unsigned i = 0; i < n; ++i) {
|
|
|
|
uint32_t v_tmp = v[i] >> (32 - shift);
|
|
|
|
v[i] = (v[i] << shift) | v_carry;
|
|
|
|
v_carry = v_tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
u[m+n] = u_carry;
|
|
|
|
|
|
|
|
// D2. [Initialize j.] Set j to m. This is the loop counter over the places.
|
|
|
|
int j = m;
|
|
|
|
do {
|
|
|
|
// D3. [Calculate q'.].
|
|
|
|
// Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
|
|
|
|
// Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
|
|
|
|
// Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
|
|
|
|
// qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
|
|
|
|
// on v[n-2] determines at high speed most of the cases in which the trial
|
|
|
|
// value qp is one too large, and it eliminates all cases where qp is two
|
|
|
|
// too large.
|
|
|
|
uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
|
|
|
|
uint64_t qp = dividend / v[n-1];
|
|
|
|
uint64_t rp = dividend % v[n-1];
|
|
|
|
if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
|
|
|
|
qp--;
|
|
|
|
rp += v[n-1];
|
|
|
|
if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
|
|
|
|
qp--;
|
|
|
|
}
|
|
|
|
|
|
|
|
// D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
|
|
|
|
// (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
|
|
|
|
// consists of a simple multiplication by a one-place number, combined with
|
|
|
|
// a subtraction.
|
|
|
|
// The digits (u[j+n]...u[j]) should be kept positive; if the result of
|
|
|
|
// this step is actually negative, (u[j+n]...u[j]) should be left as the
|
|
|
|
// true value plus b**(n+1), namely as the b's complement of
|
|
|
|
// the true value, and a "borrow" to the left should be remembered.
|
|
|
|
int64_t borrow = 0;
|
|
|
|
for (unsigned i = 0; i < n; ++i) {
|
|
|
|
uint64_t p = uint64_t(qp) * uint64_t(v[i]);
|
|
|
|
int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
|
|
|
|
u[j+i] = Lo_32(subres);
|
|
|
|
borrow = Hi_32(p) - Hi_32(subres);
|
|
|
|
}
|
|
|
|
bool isNeg = u[j+n] < borrow;
|
|
|
|
u[j+n] -= Lo_32(borrow);
|
|
|
|
|
|
|
|
// D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
|
|
|
|
// negative, go to step D6; otherwise go on to step D7.
|
|
|
|
q[j] = Lo_32(qp);
|
|
|
|
if (isNeg) {
|
|
|
|
// D6. [Add back]. The probability that this step is necessary is very
|
|
|
|
// small, on the order of only 2/b. Make sure that test data accounts for
|
|
|
|
// this possibility. Decrease q[j] by 1
|
|
|
|
q[j]--;
|
|
|
|
// and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
|
|
|
|
// A carry will occur to the left of u[j+n], and it should be ignored
|
|
|
|
// since it cancels with the borrow that occurred in D4.
|
|
|
|
bool carry = false;
|
|
|
|
for (unsigned i = 0; i < n; i++) {
|
|
|
|
uint32_t limit = std::min(u[j+i],v[i]);
|
|
|
|
u[j+i] += v[i] + carry;
|
|
|
|
carry = u[j+i] < limit || (carry && u[j+i] == limit);
|
|
|
|
}
|
|
|
|
u[j+n] += carry;
|
|
|
|
}
|
|
|
|
|
|
|
|
// D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
|
|
|
|
} while (--j >= 0);
|
|
|
|
|
|
|
|
// D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
|
|
|
|
// remainder may be obtained by dividing u[...] by d. If r is non-null we
|
|
|
|
// compute the remainder (urem uses this).
|
|
|
|
if (r) {
|
|
|
|
// The value d is expressed by the "shift" value above since we avoided
|
|
|
|
// multiplication by d by using a shift left. So, all we have to do is
|
|
|
|
// shift right here.
|
|
|
|
if (shift) {
|
|
|
|
uint32_t carry = 0;
|
|
|
|
for (int i = n-1; i >= 0; i--) {
|
|
|
|
r[i] = (u[i] >> shift) | carry;
|
|
|
|
carry = u[i] << (32 - shift);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int i = n-1; i >= 0; i--) {
|
|
|
|
r[i] = u[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Implementation ported from LLVM/lib/Support/APInt.cpp
|
|
|
|
static void bigint_unsigned_division(const BigInt *op1, const BigInt *op2, BigInt *Quotient, BigInt *Remainder) {
|
|
|
|
Cmp cmp = bigint_cmp(op1, op2);
|
|
|
|
if (cmp == CmpLT) {
|
|
|
|
if (Quotient != nullptr) {
|
|
|
|
bigint_init_unsigned(Quotient, 0);
|
|
|
|
}
|
|
|
|
if (Remainder != nullptr) {
|
|
|
|
bigint_init_bigint(Remainder, op1);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (cmp == CmpEQ) {
|
|
|
|
if (Quotient != nullptr) {
|
|
|
|
bigint_init_unsigned(Quotient, 1);
|
|
|
|
}
|
|
|
|
if (Remainder != nullptr) {
|
|
|
|
bigint_init_unsigned(Remainder, 0);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint64_t *LHS = bigint_ptr(op1);
|
|
|
|
const uint64_t *RHS = bigint_ptr(op2);
|
|
|
|
unsigned lhsWords = op1->digit_count;
|
|
|
|
unsigned rhsWords = op2->digit_count;
|
|
|
|
|
|
|
|
// First, compose the values into an array of 32-bit words instead of
|
|
|
|
// 64-bit words. This is a necessity of both the "short division" algorithm
|
|
|
|
// and the Knuth "classical algorithm" which requires there to be native
|
|
|
|
// operations for +, -, and * on an m bit value with an m*2 bit result. We
|
|
|
|
// can't use 64-bit operands here because we don't have native results of
|
|
|
|
// 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
|
|
|
|
// work on large-endian machines.
|
|
|
|
unsigned n = rhsWords * 2;
|
|
|
|
unsigned m = (lhsWords * 2) - n;
|
|
|
|
|
|
|
|
// Allocate space for the temporary values we need either on the stack, if
|
|
|
|
// it will fit, or on the heap if it won't.
|
|
|
|
uint32_t SPACE[128];
|
|
|
|
uint32_t *U = nullptr;
|
|
|
|
uint32_t *V = nullptr;
|
|
|
|
uint32_t *Q = nullptr;
|
|
|
|
uint32_t *R = nullptr;
|
|
|
|
if ((Remainder?4:3)*n+2*m+1 <= 128) {
|
|
|
|
U = &SPACE[0];
|
|
|
|
V = &SPACE[m+n+1];
|
|
|
|
Q = &SPACE[(m+n+1) + n];
|
|
|
|
if (Remainder)
|
|
|
|
R = &SPACE[(m+n+1) + n + (m+n)];
|
|
|
|
} else {
|
|
|
|
U = new uint32_t[m + n + 1];
|
|
|
|
V = new uint32_t[n];
|
|
|
|
Q = new uint32_t[m+n];
|
|
|
|
if (Remainder)
|
|
|
|
R = new uint32_t[n];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Initialize the dividend
|
|
|
|
memset(U, 0, (m+n+1)*sizeof(uint32_t));
|
|
|
|
for (unsigned i = 0; i < lhsWords; ++i) {
|
|
|
|
uint64_t tmp = LHS[i];
|
|
|
|
U[i * 2] = Lo_32(tmp);
|
|
|
|
U[i * 2 + 1] = Hi_32(tmp);
|
|
|
|
}
|
|
|
|
U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
|
|
|
|
|
|
|
|
// Initialize the divisor
|
|
|
|
memset(V, 0, (n)*sizeof(uint32_t));
|
|
|
|
for (unsigned i = 0; i < rhsWords; ++i) {
|
|
|
|
uint64_t tmp = RHS[i];
|
|
|
|
V[i * 2] = Lo_32(tmp);
|
|
|
|
V[i * 2 + 1] = Hi_32(tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
// initialize the quotient and remainder
|
|
|
|
memset(Q, 0, (m+n) * sizeof(uint32_t));
|
|
|
|
if (Remainder)
|
|
|
|
memset(R, 0, n * sizeof(uint32_t));
|
|
|
|
|
|
|
|
// Now, adjust m and n for the Knuth division. n is the number of words in
|
|
|
|
// the divisor. m is the number of words by which the dividend exceeds the
|
|
|
|
// divisor (i.e. m+n is the length of the dividend). These sizes must not
|
|
|
|
// contain any zero words or the Knuth algorithm fails.
|
|
|
|
for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
|
|
|
|
n--;
|
|
|
|
m++;
|
|
|
|
}
|
|
|
|
for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
|
|
|
|
m--;
|
|
|
|
|
|
|
|
// If we're left with only a single word for the divisor, Knuth doesn't work
|
|
|
|
// so we implement the short division algorithm here. This is much simpler
|
|
|
|
// and faster because we are certain that we can divide a 64-bit quantity
|
|
|
|
// by a 32-bit quantity at hardware speed and short division is simply a
|
|
|
|
// series of such operations. This is just like doing short division but we
|
|
|
|
// are using base 2^32 instead of base 10.
|
|
|
|
assert(n != 0 && "Divide by zero?");
|
|
|
|
if (n == 1) {
|
|
|
|
uint32_t divisor = V[0];
|
|
|
|
uint32_t remainder = 0;
|
|
|
|
for (int i = m; i >= 0; i--) {
|
|
|
|
uint64_t partial_dividend = Make_64(remainder, U[i]);
|
|
|
|
if (partial_dividend == 0) {
|
|
|
|
Q[i] = 0;
|
|
|
|
remainder = 0;
|
|
|
|
} else if (partial_dividend < divisor) {
|
|
|
|
Q[i] = 0;
|
|
|
|
remainder = Lo_32(partial_dividend);
|
|
|
|
} else if (partial_dividend == divisor) {
|
|
|
|
Q[i] = 1;
|
|
|
|
remainder = 0;
|
|
|
|
} else {
|
|
|
|
Q[i] = Lo_32(partial_dividend / divisor);
|
|
|
|
remainder = Lo_32(partial_dividend - (Q[i] * divisor));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (R)
|
|
|
|
R[0] = remainder;
|
|
|
|
} else {
|
|
|
|
// Now we're ready to invoke the Knuth classical divide algorithm. In this
|
|
|
|
// case n > 1.
|
|
|
|
KnuthDiv(U, V, Q, R, m, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the caller wants the quotient
|
|
|
|
if (Quotient) {
|
|
|
|
Quotient->is_negative = false;
|
2018-01-16 00:09:44 -08:00
|
|
|
Quotient->digit_count = lhsWords;
|
|
|
|
if (lhsWords == 1) {
|
|
|
|
Quotient->data.digit = Make_64(Q[1], Q[0]);
|
|
|
|
} else {
|
|
|
|
Quotient->data.digits = allocate<uint64_t>(lhsWords);
|
|
|
|
for (size_t i = 0; i < lhsWords; i += 1) {
|
|
|
|
Quotient->data.digits[i] = Make_64(Q[i*2+1], Q[i*2]);
|
|
|
|
}
|
2018-01-15 19:17:22 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the caller wants the remainder
|
|
|
|
if (Remainder) {
|
|
|
|
Remainder->is_negative = false;
|
2018-01-16 00:09:44 -08:00
|
|
|
Remainder->digit_count = rhsWords;
|
|
|
|
if (rhsWords == 1) {
|
|
|
|
Remainder->data.digit = Make_64(R[1], R[0]);
|
|
|
|
} else {
|
|
|
|
Remainder->data.digits = allocate<uint64_t>(rhsWords);
|
|
|
|
for (size_t i = 0; i < rhsWords; i += 1) {
|
|
|
|
Remainder->data.digits[i] = Make_64(R[i*2+1], R[i*2]);
|
|
|
|
}
|
2018-01-15 19:17:22 -08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-06-26 11:41:47 -07:00
|
|
|
void bigint_div_trunc(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
assert(op2->digit_count != 0); // division by zero
|
|
|
|
if (op1->digit_count == 0) {
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
const uint64_t *op1_digits = bigint_ptr(op1);
|
|
|
|
const uint64_t *op2_digits = bigint_ptr(op2);
|
2018-01-15 19:17:22 -08:00
|
|
|
if (op1->digit_count == 1 && op2->digit_count == 1) {
|
|
|
|
dest->data.digit = op1_digits[0] / op2_digits[0];
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->is_negative = op1->is_negative != op2->is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (op2->digit_count == 1 && op2_digits[0] == 1) {
|
|
|
|
// X / 1 == X
|
|
|
|
bigint_init_bigint(dest, op1);
|
|
|
|
dest->is_negative = op1->is_negative != op2->is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const BigInt *op1_positive;
|
|
|
|
BigInt op1_positive_data;
|
|
|
|
if (op1->is_negative) {
|
|
|
|
bigint_negate(&op1_positive_data, op1);
|
|
|
|
op1_positive = &op1_positive_data;
|
|
|
|
} else {
|
|
|
|
op1_positive = op1;
|
|
|
|
}
|
|
|
|
|
|
|
|
const BigInt *op2_positive;
|
|
|
|
BigInt op2_positive_data;
|
|
|
|
if (op2->is_negative) {
|
|
|
|
bigint_negate(&op2_positive_data, op2);
|
|
|
|
op2_positive = &op2_positive_data;
|
|
|
|
} else {
|
|
|
|
op2_positive = op2;
|
|
|
|
}
|
|
|
|
|
|
|
|
bigint_unsigned_division(op1_positive, op2_positive, dest, nullptr);
|
2017-06-26 11:41:47 -07:00
|
|
|
dest->is_negative = op1->is_negative != op2->is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_div_floor(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
if (op1->is_negative != op2->is_negative) {
|
|
|
|
bigint_div_trunc(dest, op1, op2);
|
|
|
|
BigInt mult_again = {0};
|
|
|
|
bigint_mul(&mult_again, dest, op2);
|
|
|
|
mult_again.is_negative = op1->is_negative;
|
|
|
|
if (bigint_cmp(&mult_again, op1) != CmpEQ) {
|
|
|
|
BigInt tmp = {0};
|
|
|
|
bigint_init_bigint(&tmp, dest);
|
|
|
|
BigInt neg_one = {0};
|
|
|
|
bigint_init_signed(&neg_one, -1);
|
|
|
|
bigint_add(dest, &tmp, &neg_one);
|
|
|
|
}
|
|
|
|
bigint_normalize(dest);
|
|
|
|
} else {
|
|
|
|
bigint_div_trunc(dest, op1, op2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_rem(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
assert(op2->digit_count != 0); // division by zero
|
|
|
|
if (op1->digit_count == 0) {
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
const uint64_t *op1_digits = bigint_ptr(op1);
|
|
|
|
const uint64_t *op2_digits = bigint_ptr(op2);
|
2018-01-15 19:17:22 -08:00
|
|
|
|
|
|
|
if (op1->digit_count == 1 && op2->digit_count == 1) {
|
|
|
|
dest->data.digit = op1_digits[0] % op2_digits[0];
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->is_negative = op1->is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
2017-06-26 11:41:47 -07:00
|
|
|
if (op2->digit_count == 2 && op2_digits[0] == 0 && op2_digits[1] == 1) {
|
|
|
|
// special case this divisor
|
|
|
|
bigint_init_unsigned(dest, op1_digits[0]);
|
|
|
|
dest->is_negative = op1->is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
2018-01-15 19:17:22 -08:00
|
|
|
|
|
|
|
if (op2->digit_count == 1 && op2_digits[0] == 1) {
|
|
|
|
// X % 1 == 0
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
return;
|
2017-06-26 11:41:47 -07:00
|
|
|
}
|
2018-01-15 19:17:22 -08:00
|
|
|
|
|
|
|
const BigInt *op1_positive;
|
|
|
|
BigInt op1_positive_data;
|
|
|
|
if (op1->is_negative) {
|
|
|
|
bigint_negate(&op1_positive_data, op1);
|
|
|
|
op1_positive = &op1_positive_data;
|
|
|
|
} else {
|
|
|
|
op1_positive = op1;
|
|
|
|
}
|
|
|
|
|
|
|
|
const BigInt *op2_positive;
|
|
|
|
BigInt op2_positive_data;
|
|
|
|
if (op2->is_negative) {
|
|
|
|
bigint_negate(&op2_positive_data, op2);
|
|
|
|
op2_positive = &op2_positive_data;
|
|
|
|
} else {
|
|
|
|
op2_positive = op2;
|
|
|
|
}
|
|
|
|
|
|
|
|
bigint_unsigned_division(op1_positive, op2_positive, nullptr, dest);
|
2017-06-26 11:41:47 -07:00
|
|
|
dest->is_negative = op1->is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_mod(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
if (op1->is_negative) {
|
|
|
|
BigInt first_rem;
|
|
|
|
bigint_rem(&first_rem, op1, op2);
|
|
|
|
first_rem.is_negative = !op2->is_negative;
|
|
|
|
BigInt op2_minus_rem;
|
|
|
|
bigint_add(&op2_minus_rem, op2, &first_rem);
|
|
|
|
bigint_rem(dest, &op2_minus_rem, op2);
|
|
|
|
dest->is_negative = false;
|
|
|
|
} else {
|
|
|
|
bigint_rem(dest, op1, op2);
|
|
|
|
dest->is_negative = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_or(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
if (op1->digit_count == 0) {
|
|
|
|
return bigint_init_bigint(dest, op2);
|
|
|
|
}
|
|
|
|
if (op2->digit_count == 0) {
|
|
|
|
return bigint_init_bigint(dest, op1);
|
|
|
|
}
|
|
|
|
if (op1->is_negative || op2->is_negative) {
|
|
|
|
// TODO this code path is untested
|
|
|
|
size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
|
|
|
|
|
|
|
|
BigInt twos_comp_op1 = {0};
|
|
|
|
to_twos_complement(&twos_comp_op1, op1, big_bit_count);
|
|
|
|
|
|
|
|
BigInt twos_comp_op2 = {0};
|
|
|
|
to_twos_complement(&twos_comp_op2, op2, big_bit_count);
|
|
|
|
|
|
|
|
BigInt twos_comp_dest = {0};
|
|
|
|
bigint_or(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
|
|
|
|
|
|
|
|
from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
|
|
|
|
} else {
|
|
|
|
dest->is_negative = false;
|
|
|
|
const uint64_t *op1_digits = bigint_ptr(op1);
|
|
|
|
const uint64_t *op2_digits = bigint_ptr(op2);
|
|
|
|
if (op1->digit_count == 1 && op2->digit_count == 1) {
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->data.digit = op1_digits[0] | op2_digits[0];
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// TODO this code path is untested
|
|
|
|
uint64_t first_digit = dest->data.digit;
|
|
|
|
dest->digit_count = max(op1->digit_count, op2->digit_count);
|
|
|
|
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
|
|
|
|
dest->data.digits[0] = first_digit;
|
|
|
|
size_t i = 1;
|
|
|
|
for (; i < dest->digit_count; i += 1) {
|
|
|
|
uint64_t digit = 0;
|
|
|
|
if (i < op1->digit_count) {
|
|
|
|
digit |= op1_digits[i];
|
|
|
|
}
|
|
|
|
if (i < op2->digit_count) {
|
|
|
|
digit |= op2_digits[i];
|
|
|
|
}
|
|
|
|
dest->data.digits[i] = digit;
|
|
|
|
}
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_and(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
if (op1->digit_count == 0 || op2->digit_count == 0) {
|
|
|
|
return bigint_init_unsigned(dest, 0);
|
|
|
|
}
|
|
|
|
if (op1->is_negative || op2->is_negative) {
|
|
|
|
// TODO this code path is untested
|
|
|
|
size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
|
|
|
|
|
|
|
|
BigInt twos_comp_op1 = {0};
|
|
|
|
to_twos_complement(&twos_comp_op1, op1, big_bit_count);
|
|
|
|
|
|
|
|
BigInt twos_comp_op2 = {0};
|
|
|
|
to_twos_complement(&twos_comp_op2, op2, big_bit_count);
|
|
|
|
|
|
|
|
BigInt twos_comp_dest = {0};
|
|
|
|
bigint_and(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
|
|
|
|
|
|
|
|
from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
|
|
|
|
} else {
|
|
|
|
dest->is_negative = false;
|
|
|
|
const uint64_t *op1_digits = bigint_ptr(op1);
|
|
|
|
const uint64_t *op2_digits = bigint_ptr(op2);
|
|
|
|
if (op1->digit_count == 1 && op2->digit_count == 1) {
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->data.digit = op1_digits[0] & op2_digits[0];
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// TODO this code path is untested
|
|
|
|
uint64_t first_digit = dest->data.digit;
|
|
|
|
dest->digit_count = max(op1->digit_count, op2->digit_count);
|
|
|
|
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
|
|
|
|
dest->data.digits[0] = first_digit;
|
|
|
|
size_t i = 1;
|
|
|
|
for (; i < op1->digit_count && i < op2->digit_count; i += 1) {
|
|
|
|
dest->data.digits[i] = op1_digits[i] & op2_digits[i];
|
|
|
|
}
|
|
|
|
for (; i < dest->digit_count; i += 1) {
|
|
|
|
dest->data.digits[i] = 0;
|
|
|
|
}
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_xor(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
2018-01-17 05:00:27 -08:00
|
|
|
if (op1->digit_count == 0) {
|
|
|
|
return bigint_init_bigint(dest, op2);
|
|
|
|
}
|
|
|
|
if (op2->digit_count == 0) {
|
|
|
|
return bigint_init_bigint(dest, op1);
|
|
|
|
}
|
2017-06-26 11:41:47 -07:00
|
|
|
if (op1->is_negative || op2->is_negative) {
|
|
|
|
// TODO this code path is untested
|
|
|
|
size_t big_bit_count = max(bigint_bits_needed(op1), bigint_bits_needed(op2));
|
|
|
|
|
|
|
|
BigInt twos_comp_op1 = {0};
|
|
|
|
to_twos_complement(&twos_comp_op1, op1, big_bit_count);
|
|
|
|
|
|
|
|
BigInt twos_comp_op2 = {0};
|
|
|
|
to_twos_complement(&twos_comp_op2, op2, big_bit_count);
|
|
|
|
|
|
|
|
BigInt twos_comp_dest = {0};
|
|
|
|
bigint_xor(&twos_comp_dest, &twos_comp_op1, &twos_comp_op2);
|
|
|
|
|
|
|
|
from_twos_complement(dest, &twos_comp_dest, big_bit_count, true);
|
|
|
|
} else {
|
|
|
|
dest->is_negative = false;
|
|
|
|
const uint64_t *op1_digits = bigint_ptr(op1);
|
|
|
|
const uint64_t *op2_digits = bigint_ptr(op2);
|
2018-01-17 05:31:47 -08:00
|
|
|
|
|
|
|
assert(op1->digit_count > 0 && op2->digit_count > 0);
|
|
|
|
uint64_t first_digit = op1_digits[0] ^ op2_digits[0];
|
2017-06-26 11:41:47 -07:00
|
|
|
if (op1->digit_count == 1 && op2->digit_count == 1) {
|
|
|
|
dest->digit_count = 1;
|
2018-01-17 05:31:47 -08:00
|
|
|
dest->data.digit = first_digit;
|
2017-06-26 11:41:47 -07:00
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// TODO this code path is untested
|
|
|
|
dest->digit_count = max(op1->digit_count, op2->digit_count);
|
|
|
|
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
|
|
|
|
dest->data.digits[0] = first_digit;
|
|
|
|
size_t i = 1;
|
|
|
|
for (; i < op1->digit_count && i < op2->digit_count; i += 1) {
|
|
|
|
dest->data.digits[i] = op1_digits[i] ^ op2_digits[i];
|
|
|
|
}
|
|
|
|
for (; i < dest->digit_count; i += 1) {
|
|
|
|
if (i < op1->digit_count) {
|
|
|
|
dest->data.digits[i] = op1_digits[i];
|
|
|
|
}
|
|
|
|
if (i < op2->digit_count) {
|
|
|
|
dest->data.digits[i] = op2_digits[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_shl(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
assert(!op2->is_negative);
|
|
|
|
|
|
|
|
if (op2->digit_count == 0) {
|
|
|
|
bigint_init_bigint(dest, op1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (op1->digit_count == 0) {
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (op2->digit_count != 1) {
|
|
|
|
zig_panic("TODO shift left by amount greater than 64 bit integer");
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint64_t *op1_digits = bigint_ptr(op1);
|
|
|
|
uint64_t shift_amt = bigint_as_unsigned(op2);
|
|
|
|
|
2017-08-17 19:01:19 -07:00
|
|
|
if (op1->digit_count == 1 && shift_amt < 64) {
|
2017-06-26 11:41:47 -07:00
|
|
|
dest->data.digit = op1_digits[0] << shift_amt;
|
|
|
|
if (dest->data.digit > op1_digits[0]) {
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->is_negative = op1->is_negative;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t digit_shift_count = shift_amt / 64;
|
|
|
|
uint64_t leftover_shift_count = shift_amt % 64;
|
|
|
|
|
|
|
|
dest->data.digits = allocate<uint64_t>(op1->digit_count + digit_shift_count + 1);
|
|
|
|
dest->digit_count = digit_shift_count;
|
|
|
|
uint64_t carry = 0;
|
|
|
|
for (size_t i = 0; i < op1->digit_count; i += 1) {
|
|
|
|
uint64_t digit = op1_digits[i];
|
|
|
|
dest->data.digits[dest->digit_count] = carry | (digit << leftover_shift_count);
|
|
|
|
dest->digit_count += 1;
|
|
|
|
if (leftover_shift_count > 0) {
|
|
|
|
carry = digit >> (64 - leftover_shift_count);
|
|
|
|
} else {
|
|
|
|
carry = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dest->data.digits[dest->digit_count] = carry;
|
|
|
|
dest->digit_count += 1;
|
|
|
|
dest->is_negative = op1->is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
|
2017-08-09 07:09:38 -07:00
|
|
|
void bigint_shl_trunc(BigInt *dest, const BigInt *op1, const BigInt *op2, size_t bit_count, bool is_signed) {
|
2017-06-26 11:41:47 -07:00
|
|
|
BigInt unwrapped = {0};
|
|
|
|
bigint_shl(&unwrapped, op1, op2);
|
|
|
|
bigint_truncate(dest, &unwrapped, bit_count, is_signed);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_shr(BigInt *dest, const BigInt *op1, const BigInt *op2) {
|
|
|
|
assert(!op2->is_negative);
|
|
|
|
|
|
|
|
if (op1->digit_count == 0) {
|
|
|
|
return bigint_init_unsigned(dest, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (op2->digit_count == 0) {
|
|
|
|
return bigint_init_bigint(dest, op1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (op2->digit_count != 1) {
|
|
|
|
zig_panic("TODO shift right by amount greater than 64 bit integer");
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint64_t *op1_digits = bigint_ptr(op1);
|
|
|
|
uint64_t shift_amt = bigint_as_unsigned(op2);
|
|
|
|
|
|
|
|
if (op1->digit_count == 1) {
|
|
|
|
dest->data.digit = op1_digits[0] >> shift_amt;
|
|
|
|
dest->digit_count = 1;
|
|
|
|
dest->is_negative = op1->is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO this code path is untested
|
|
|
|
size_t digit_shift_count = shift_amt / 64;
|
|
|
|
size_t leftover_shift_count = shift_amt % 64;
|
|
|
|
|
|
|
|
if (digit_shift_count >= op1->digit_count) {
|
|
|
|
return bigint_init_unsigned(dest, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
dest->digit_count = op1->digit_count - digit_shift_count;
|
|
|
|
dest->data.digits = allocate<uint64_t>(dest->digit_count);
|
|
|
|
uint64_t carry = 0;
|
|
|
|
for (size_t op_digit_index = op1->digit_count - 1;;) {
|
|
|
|
uint64_t digit = op1_digits[op_digit_index];
|
|
|
|
size_t dest_digit_index = op_digit_index - digit_shift_count;
|
|
|
|
dest->data.digits[dest_digit_index] = carry | (digit >> leftover_shift_count);
|
|
|
|
carry = (0xffffffffffffffffULL << leftover_shift_count) & digit;
|
|
|
|
|
|
|
|
if (dest_digit_index == 0) { break; }
|
|
|
|
op_digit_index -= 1;
|
|
|
|
}
|
|
|
|
dest->is_negative = op1->is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_negate(BigInt *dest, const BigInt *op) {
|
|
|
|
bigint_init_bigint(dest, op);
|
|
|
|
dest->is_negative = !dest->is_negative;
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_negate_wrap(BigInt *dest, const BigInt *op, size_t bit_count) {
|
|
|
|
BigInt zero;
|
|
|
|
bigint_init_unsigned(&zero, 0);
|
|
|
|
bigint_sub_wrap(dest, &zero, op, bit_count, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_not(BigInt *dest, const BigInt *op, size_t bit_count, bool is_signed) {
|
|
|
|
if (bit_count == 0) {
|
|
|
|
bigint_init_unsigned(dest, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_signed) {
|
|
|
|
BigInt twos_comp = {0};
|
|
|
|
to_twos_complement(&twos_comp, op, bit_count);
|
|
|
|
|
|
|
|
BigInt inverted = {0};
|
|
|
|
bigint_not(&inverted, &twos_comp, bit_count, false);
|
|
|
|
|
|
|
|
from_twos_complement(dest, &inverted, bit_count, true);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(!op->is_negative);
|
|
|
|
|
|
|
|
dest->is_negative = false;
|
|
|
|
const uint64_t *op_digits = bigint_ptr(op);
|
|
|
|
if (bit_count <= 64) {
|
|
|
|
dest->digit_count = 1;
|
|
|
|
if (op->digit_count == 0) {
|
|
|
|
if (bit_count == 64) {
|
|
|
|
dest->data.digit = UINT64_MAX;
|
|
|
|
} else {
|
|
|
|
dest->data.digit = (1ULL << bit_count) - 1;
|
|
|
|
}
|
|
|
|
} else if (op->digit_count == 1) {
|
|
|
|
dest->data.digit = ~op_digits[0];
|
|
|
|
if (bit_count != 64) {
|
|
|
|
uint64_t mask = (1ULL << bit_count) - 1;
|
|
|
|
dest->data.digit &= mask;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
bigint_normalize(dest);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// TODO this code path is untested
|
|
|
|
dest->digit_count = bit_count / 64;
|
|
|
|
assert(dest->digit_count >= op->digit_count);
|
|
|
|
dest->data.digits = allocate_nonzero<uint64_t>(dest->digit_count);
|
|
|
|
size_t i = 0;
|
|
|
|
for (; i < op->digit_count; i += 1) {
|
|
|
|
dest->data.digits[i] = ~op_digits[i];
|
|
|
|
}
|
|
|
|
for (; i < dest->digit_count; i += 1) {
|
|
|
|
dest->data.digits[i] = 0xffffffffffffffffULL;
|
|
|
|
}
|
|
|
|
size_t digit_index = dest->digit_count - (bit_count / 64) - 1;
|
|
|
|
size_t digit_bit_index = bit_count % 64;
|
|
|
|
if (digit_index < dest->digit_count) {
|
|
|
|
uint64_t mask = (1ULL << digit_bit_index) - 1;
|
|
|
|
dest->data.digits[digit_index] &= mask;
|
|
|
|
}
|
|
|
|
bigint_normalize(dest);
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_truncate(BigInt *dest, const BigInt *op, size_t bit_count, bool is_signed) {
|
|
|
|
BigInt twos_comp;
|
|
|
|
to_twos_complement(&twos_comp, op, bit_count);
|
|
|
|
from_twos_complement(dest, &twos_comp, bit_count, is_signed);
|
|
|
|
}
|
|
|
|
|
|
|
|
Cmp bigint_cmp(const BigInt *op1, const BigInt *op2) {
|
|
|
|
if (op1->is_negative && !op2->is_negative) {
|
|
|
|
return CmpLT;
|
|
|
|
} else if (!op1->is_negative && op2->is_negative) {
|
|
|
|
return CmpGT;
|
|
|
|
} else if (op1->digit_count > op2->digit_count) {
|
|
|
|
return op1->is_negative ? CmpLT : CmpGT;
|
|
|
|
} else if (op2->digit_count > op1->digit_count) {
|
|
|
|
return op1->is_negative ? CmpGT : CmpLT;
|
|
|
|
} else if (op1->digit_count == 0) {
|
|
|
|
return CmpEQ;
|
|
|
|
}
|
|
|
|
const uint64_t *op1_digits = bigint_ptr(op1);
|
|
|
|
const uint64_t *op2_digits = bigint_ptr(op2);
|
|
|
|
for (size_t i = op1->digit_count - 1; ;) {
|
|
|
|
uint64_t op1_digit = op1_digits[i];
|
|
|
|
uint64_t op2_digit = op2_digits[i];
|
|
|
|
|
|
|
|
if (op1_digit > op2_digit) {
|
|
|
|
return op1->is_negative ? CmpLT : CmpGT;
|
|
|
|
}
|
|
|
|
if (op1_digit < op2_digit) {
|
|
|
|
return op1->is_negative ? CmpGT : CmpLT;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == 0) {
|
|
|
|
return CmpEQ;
|
|
|
|
}
|
|
|
|
i -= 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-08-19 21:33:05 -07:00
|
|
|
void bigint_append_buf(Buf *buf, const BigInt *op, uint64_t base) {
|
2017-06-26 11:41:47 -07:00
|
|
|
if (op->digit_count == 0) {
|
|
|
|
buf_append_char(buf, '0');
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (op->is_negative) {
|
|
|
|
buf_append_char(buf, '-');
|
|
|
|
}
|
|
|
|
if (op->digit_count == 1 && base == 10) {
|
|
|
|
buf_appendf(buf, "%" ZIG_PRI_u64, op->data.digit);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// TODO this code path is untested
|
|
|
|
size_t first_digit_index = buf_len(buf);
|
|
|
|
|
|
|
|
BigInt digit_bi = {0};
|
|
|
|
BigInt a1 = {0};
|
|
|
|
BigInt a2 = {0};
|
|
|
|
|
|
|
|
BigInt *a = &a1;
|
|
|
|
BigInt *other_a = &a2;
|
|
|
|
bigint_init_bigint(a, op);
|
|
|
|
|
|
|
|
BigInt base_bi = {0};
|
|
|
|
bigint_init_unsigned(&base_bi, 10);
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
bigint_rem(&digit_bi, a, &base_bi);
|
|
|
|
uint8_t digit = bigint_as_unsigned(&digit_bi);
|
|
|
|
buf_append_char(buf, digit_to_char(digit, false));
|
|
|
|
bigint_div_trunc(other_a, a, &base_bi);
|
|
|
|
{
|
|
|
|
BigInt *tmp = a;
|
|
|
|
a = other_a;
|
|
|
|
other_a = tmp;
|
|
|
|
}
|
|
|
|
if (bigint_cmp_zero(a) == CmpEQ) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// reverse
|
|
|
|
for (size_t i = first_digit_index; i < buf_len(buf); i += 1) {
|
|
|
|
size_t other_i = buf_len(buf) + first_digit_index - i - 1;
|
|
|
|
uint8_t tmp = buf_ptr(buf)[i];
|
|
|
|
buf_ptr(buf)[i] = buf_ptr(buf)[other_i];
|
|
|
|
buf_ptr(buf)[other_i] = tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t bigint_ctz(const BigInt *bi, size_t bit_count) {
|
|
|
|
if (bit_count == 0)
|
|
|
|
return 0;
|
|
|
|
if (bi->digit_count == 0)
|
|
|
|
return bit_count;
|
|
|
|
|
|
|
|
BigInt twos_comp = {0};
|
|
|
|
to_twos_complement(&twos_comp, bi, bit_count);
|
|
|
|
|
|
|
|
size_t count = 0;
|
|
|
|
for (size_t i = 0; i < bit_count; i += 1) {
|
|
|
|
if (bit_at_index(&twos_comp, i))
|
|
|
|
return count;
|
|
|
|
count += 1;
|
|
|
|
}
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t bigint_clz(const BigInt *bi, size_t bit_count) {
|
|
|
|
if (bi->is_negative || bit_count == 0)
|
|
|
|
return 0;
|
|
|
|
if (bi->digit_count == 0)
|
|
|
|
return bit_count;
|
|
|
|
|
|
|
|
size_t count = 0;
|
|
|
|
for (size_t i = bit_count - 1;;) {
|
|
|
|
if (bit_at_index(bi, i))
|
|
|
|
return count;
|
|
|
|
count += 1;
|
|
|
|
|
|
|
|
if (i == 0) break;
|
|
|
|
i -= 1;
|
|
|
|
}
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t bigint_as_unsigned(const BigInt *bigint) {
|
|
|
|
assert(!bigint->is_negative);
|
|
|
|
if (bigint->digit_count == 0) {
|
|
|
|
return 0;
|
|
|
|
} else if (bigint->digit_count == 1) {
|
|
|
|
return bigint->data.digit;
|
|
|
|
} else {
|
|
|
|
zig_unreachable();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t bigint_as_signed(const BigInt *bigint) {
|
|
|
|
if (bigint->digit_count == 0) {
|
|
|
|
return 0;
|
|
|
|
} else if (bigint->digit_count == 1) {
|
|
|
|
if (bigint->is_negative) {
|
|
|
|
// TODO this code path is untested
|
|
|
|
if (bigint->data.digit <= 9223372036854775808ULL) {
|
|
|
|
return (-((int64_t)(bigint->data.digit - 1))) - 1;
|
|
|
|
} else {
|
|
|
|
zig_unreachable();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
return bigint->data.digit;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
zig_unreachable();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Cmp bigint_cmp_zero(const BigInt *op) {
|
|
|
|
if (op->digit_count == 0) {
|
|
|
|
return CmpEQ;
|
|
|
|
}
|
|
|
|
return op->is_negative ? CmpLT : CmpGT;
|
|
|
|
}
|
2017-12-02 19:31:42 -08:00
|
|
|
|
|
|
|
uint32_t bigint_hash(BigInt x) {
|
|
|
|
if (x.digit_count == 0) {
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
|
|
return bigint_ptr(&x)[0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool bigint_eql(BigInt a, BigInt b) {
|
|
|
|
return bigint_cmp(&a, &b) == CmpEQ;
|
|
|
|
}
|
|
|
|
|
|
|
|
void bigint_incr(BigInt *x) {
|
|
|
|
if (x->digit_count == 0) {
|
|
|
|
bigint_init_unsigned(x, 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x->digit_count == 1 && x->data.digit != UINT64_MAX) {
|
|
|
|
x->data.digit += 1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
BigInt copy;
|
|
|
|
bigint_init_bigint(©, x);
|
|
|
|
|
|
|
|
BigInt one;
|
|
|
|
bigint_init_unsigned(&one, 1);
|
|
|
|
|
|
|
|
bigint_add(x, ©, &one);
|
|
|
|
}
|