ocaml/otherlibs/num/ratio.ml

568 lines
20 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Valerie Menissier-Morain, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
open Int_misc
open String_misc
open Nat
open Big_int
open Arith_flags
(* Definition of the type ratio :
Conventions :
- the denominator is always a positive number
- the sign of n/0 is the sign of n
These convention is automatically respected when a ratio is created with
the create_ratio primitive
*)
type ratio = { mutable numerator : big_int;
mutable denominator : big_int;
mutable normalized : bool}
let failwith_zero name =
let s = "infinite or undefined rational number" in
failwith (if String.length name = 0 then s else name ^ " " ^ s)
let numerator_ratio r = r.numerator
and denominator_ratio r = r.denominator
let null_denominator r = sign_big_int r.denominator = 0
let verify_null_denominator r =
if sign_big_int r.denominator = 0
then (if !error_when_null_denominator_flag
then (failwith_zero "")
else true)
else false
let sign_ratio r = sign_big_int r.numerator
(* Physical normalization of rational numbers *)
(* 1/0, 0/0 and -1/0 are the normalized forms for n/0 numbers *)
let normalize_ratio r =
if r.normalized then r
else if verify_null_denominator r then begin
r.numerator <- big_int_of_int (sign_big_int r.numerator);
r.normalized <- true;
r
end else begin
let p = gcd_big_int r.numerator r.denominator in
if eq_big_int p unit_big_int
then begin
r.normalized <- true; r
end else begin
r.numerator <- div_big_int (r.numerator) p;
r.denominator <- div_big_int (r.denominator) p;
r.normalized <- true; r
end
end
let cautious_normalize_ratio r =
if (!normalize_ratio_flag) then (normalize_ratio r) else r
let cautious_normalize_ratio_when_printing r =
if (!normalize_ratio_when_printing_flag) then (normalize_ratio r) else r
let create_ratio bi1 bi2 =
match sign_big_int bi2 with
-1 -> cautious_normalize_ratio
{ numerator = minus_big_int bi1;
denominator = minus_big_int bi2;
normalized = false }
| 0 -> if !error_when_null_denominator_flag
then (failwith_zero "create_ratio")
else cautious_normalize_ratio
{ numerator = bi1; denominator = bi2; normalized = false }
| _ -> cautious_normalize_ratio
{ numerator = bi1; denominator = bi2; normalized = false }
let create_normalized_ratio bi1 bi2 =
match sign_big_int bi2 with
-1 -> { numerator = minus_big_int bi1;
denominator = minus_big_int bi2;
normalized = true }
| 0 -> if !error_when_null_denominator_flag
then failwith_zero "create_normalized_ratio"
else { numerator = bi1; denominator = bi2; normalized = true }
| _ -> { numerator = bi1; denominator = bi2; normalized = true }
let is_normalized_ratio r = r.normalized
let report_sign_ratio r bi =
if sign_ratio r = -1
then minus_big_int bi
else bi
let abs_ratio r =
{ numerator = abs_big_int r.numerator;
denominator = r.denominator;
normalized = r.normalized }
let is_integer_ratio r =
eq_big_int ((normalize_ratio r).denominator) unit_big_int
(* Operations on rational numbers *)
let add_ratio r1 r2 =
if !normalize_ratio_flag then begin
let p = gcd_big_int ((normalize_ratio r1).denominator)
((normalize_ratio r2).denominator) in
if eq_big_int p unit_big_int then
{numerator = add_big_int (mult_big_int (r1.numerator) r2.denominator)
(mult_big_int (r2.numerator) r1.denominator);
denominator = mult_big_int (r1.denominator) r2.denominator;
normalized = true}
else begin
let d1 = div_big_int (r1.denominator) p
and d2 = div_big_int (r2.denominator) p in
let n = add_big_int (mult_big_int (r1.numerator) d2)
(mult_big_int d1 r2.numerator) in
let p' = gcd_big_int n p in
{ numerator = div_big_int n p';
denominator = mult_big_int d1 (div_big_int (r2.denominator) p');
normalized = true }
end
end else
{ numerator = add_big_int (mult_big_int (r1.numerator) r2.denominator)
(mult_big_int (r1.denominator) r2.numerator);
denominator = mult_big_int (r1.denominator) r2.denominator;
normalized = false }
let minus_ratio r =
{ numerator = minus_big_int (r.numerator);
denominator = r.denominator;
normalized = r.normalized }
let add_int_ratio i r =
cautious_normalize_ratio r;
{ numerator = add_big_int (mult_int_big_int i r.denominator) r.numerator;
denominator = r.denominator;
normalized = r.normalized }
let add_big_int_ratio bi r =
cautious_normalize_ratio r;
{ numerator = add_big_int (mult_big_int bi r.denominator) r.numerator ;
denominator = r.denominator;
normalized = r.normalized }
let sub_ratio r1 r2 = add_ratio r1 (minus_ratio r2)
let mult_ratio r1 r2 =
if !normalize_ratio_flag then begin
let p1 = gcd_big_int ((normalize_ratio r1).numerator)
((normalize_ratio r2).denominator)
and p2 = gcd_big_int (r2.numerator) r1.denominator in
let (n1, d2) =
if eq_big_int p1 unit_big_int
then (r1.numerator, r2.denominator)
else (div_big_int (r1.numerator) p1, div_big_int (r2.denominator) p1)
and (n2, d1) =
if eq_big_int p2 unit_big_int
then (r2.numerator, r1.denominator)
else (div_big_int r2.numerator p2, div_big_int r1.denominator p2) in
{ numerator = mult_big_int n1 n2;
denominator = mult_big_int d1 d2;
normalized = true }
end else
{ numerator = mult_big_int (r1.numerator) r2.numerator;
denominator = mult_big_int (r1.denominator) r2.denominator;
normalized = false }
let mult_int_ratio i r =
if !normalize_ratio_flag then
begin
let p = gcd_big_int ((normalize_ratio r).denominator) (big_int_of_int i) in
if eq_big_int p unit_big_int
then { numerator = mult_big_int (big_int_of_int i) r.numerator;
denominator = r.denominator;
normalized = true }
else { numerator = mult_big_int (div_big_int (big_int_of_int i) p)
r.numerator;
denominator = div_big_int (r.denominator) p;
normalized = true }
end
else
{ numerator = mult_int_big_int i r.numerator;
denominator = r.denominator;
normalized = false }
let mult_big_int_ratio bi r =
if !normalize_ratio_flag then
begin
let p = gcd_big_int ((normalize_ratio r).denominator) bi in
if eq_big_int p unit_big_int
then { numerator = mult_big_int bi r.numerator;
denominator = r.denominator;
normalized = true }
else { numerator = mult_big_int (div_big_int bi p) r.numerator;
denominator = div_big_int (r.denominator) p;
normalized = true }
end
else
{ numerator = mult_big_int bi r.numerator;
denominator = r.denominator;
normalized = false }
let square_ratio r =
cautious_normalize_ratio r;
{ numerator = square_big_int r.numerator;
denominator = square_big_int r.denominator;
normalized = r.normalized }
let inverse_ratio r =
if !error_when_null_denominator_flag & (sign_big_int r.numerator) = 0
then failwith_zero "inverse_ratio"
else {numerator = report_sign_ratio r r.denominator;
denominator = abs_big_int r.numerator;
normalized = r.normalized}
let div_ratio r1 r2 =
mult_ratio r1 (inverse_ratio r2)
(* Integer part of a rational number *)
(* Odd function *)
let integer_ratio r =
if null_denominator r then failwith_zero "integer_ratio"
else if sign_ratio r = 0 then zero_big_int
else report_sign_ratio r (div_big_int (abs_big_int r.numerator)
(abs_big_int r.denominator))
(* Floor of a rational number *)
(* Always less or equal to r *)
let floor_ratio r =
verify_null_denominator r;
div_big_int (r.numerator) r.denominator
(* Round of a rational number *)
(* Odd function, 1/2 -> 1 *)
let round_ratio r =
verify_null_denominator r;
let abs_num = abs_big_int r.numerator in
let bi = div_big_int abs_num r.denominator in
report_sign_ratio r
(if sign_big_int
(sub_big_int
(mult_int_big_int
2
(sub_big_int abs_num (mult_big_int (r.denominator) bi)))
r.denominator) = -1
then bi
else succ_big_int bi)
let ceiling_ratio r =
if (is_integer_ratio r)
then r.numerator
else succ_big_int (floor_ratio r)
(* Comparison operators on rational numbers *)
let eq_ratio r1 r2 =
normalize_ratio r1;
normalize_ratio r2;
eq_big_int (r1.numerator) r2.numerator &
eq_big_int (r1.denominator) r2.denominator
let compare_ratio r1 r2 =
if verify_null_denominator r1 then
let sign_num_r1 = sign_big_int r1.numerator in
if (verify_null_denominator r2)
then
let sign_num_r2 = sign_big_int r2.numerator in
if sign_num_r1 = 1 & sign_num_r2 = -1 then 1
else if sign_num_r1 = -1 & sign_num_r2 = 1 then -1
else 0
else sign_num_r1
else if verify_null_denominator r2 then
-(sign_big_int r2.numerator)
else match compare_int (sign_big_int r1.numerator)
(sign_big_int r2.numerator) with
1 -> 1
| -1 -> -1
| _ -> if eq_big_int (r1.denominator) r2.denominator
then compare_big_int (r1.numerator) r2.numerator
else compare_big_int
(mult_big_int (r1.numerator) r2.denominator)
(mult_big_int (r1.denominator) r2.numerator)
let lt_ratio r1 r2 = compare_ratio r1 r2 < 0
and le_ratio r1 r2 = compare_ratio r1 r2 <= 0
and gt_ratio r1 r2 = compare_ratio r1 r2 > 0
and ge_ratio r1 r2 = compare_ratio r1 r2 >= 0
let max_ratio r1 r2 = if lt_ratio r1 r2 then r2 else r1
and min_ratio r1 r2 = if gt_ratio r1 r2 then r2 else r1
let eq_big_int_ratio bi r =
(is_integer_ratio r) & eq_big_int bi r.numerator
let compare_big_int_ratio bi r =
normalize_ratio r;
if (verify_null_denominator r)
then -(sign_big_int r.numerator)
else compare_big_int (mult_big_int bi r.denominator) r.numerator
let lt_big_int_ratio bi r = compare_big_int_ratio bi r < 0
and le_big_int_ratio bi r = compare_big_int_ratio bi r <= 0
and gt_big_int_ratio bi r = compare_big_int_ratio bi r > 0
and ge_big_int_ratio bi r = compare_big_int_ratio bi r >= 0
(* Coercions *)
(* Coercions with type int *)
let int_of_ratio r =
if ((is_integer_ratio r) & (is_int_big_int r.numerator))
then (int_of_big_int r.numerator)
else failwith "integer argument required"
and ratio_of_int i =
{ numerator = big_int_of_int i;
denominator = unit_big_int;
normalized = true }
(* Coercions with type nat *)
let ratio_of_nat nat =
{ numerator = big_int_of_nat nat;
denominator = unit_big_int;
normalized = true }
and nat_of_ratio r =
normalize_ratio r;
if not (is_integer_ratio r) then
failwith "nat_of_ratio"
else if sign_big_int r.numerator > -1 then
nat_of_big_int (r.numerator)
else failwith "nat_of_ratio"
(* Coercions with type big_int *)
let ratio_of_big_int bi =
{ numerator = bi; denominator = unit_big_int; normalized = true }
and big_int_of_ratio r =
normalize_ratio r;
if is_integer_ratio r
then r.numerator
else failwith "big_int_of_ratio"
let div_int_ratio i r =
verify_null_denominator r;
mult_int_ratio i (inverse_ratio r)
let div_ratio_int r i =
div_ratio r (ratio_of_int i)
let div_big_int_ratio bi r =
verify_null_denominator r;
mult_big_int_ratio bi (inverse_ratio r)
let div_ratio_big_int r bi =
div_ratio r (ratio_of_big_int bi)
(* Functions on type string *)
(* giving floating point approximations of rational numbers *)
let only_zeros s i l =
let res = ref true in
for j = i to i + l - 1 do
if s.[j] <> '0' then res := false
done;
!res
(* Position of the leading digit of the decimal expansion *)
(* of a strictly positive rational number *)
(* if the decimal expansion of a non null rational r is equal to *)
(* sigma for k=-P to N of r_k*10^k then msd_ratio r = N *)
(* Nota : for a big_int we have msd_ratio = nums_digits_big_int -1 *)
let msd_ratio r =
cautious_normalize_ratio r;
if null_denominator r then failwith_zero "msd_ratio"
else if sign_big_int r.numerator = 0 then 0
else begin
let str_num = string_of_big_int r.numerator
and str_den = string_of_big_int r.denominator in
let size_num = String.length str_num
and size_den = String.length str_den in
let rec msd_rec str_num nnum str_den nden i m =
if i > nnum then
if i > nden or only_zeros str_den i (nden - i)
then m else pred m
else if i > nden then m
else match compare_int (Char.code (String.get str_num i))
(Char.code (String.get str_den i)) with
0 -> msd_rec str_num nnum str_den nden (succ i) m
| 1 -> m
| _ -> pred m
in msd_rec str_num (pred size_num) str_den (pred size_den)
0 (size_num - size_den)
end
(* Decimal approximations of rational numbers *)
(* Approximation with fix decimal point *)
(* This is an odd function and the last digit is round off *)
(* Format integer_part . decimal_part_with_n_digits *)
let approx_ratio_fix n r =
(* Don't need to normalize *)
if (null_denominator r) then failwith_zero "approx_ratio_fix"
else
let sign_r = sign_ratio r in
if sign_r = 0
then "+0" (* r = 0 *)
else (* r.numerator and r.denominator are not null numbers
s contains one more digit than desired for the round off operation
and to have enough room in s when including the decimal point *)
if n >= 0 then
let s =
let nat =
(nat_of_big_int
(div_big_int
(base_power_big_int
10 (succ n) (abs_big_int r.numerator))
r.denominator))
in (if sign_r = -1 then "-" else "+") ^ string_of_nat nat in
let l = String.length s in
if round_futur_last_digit s 1 (pred l)
then begin (* if one more char is needed in s *)
let str = (String.make (succ l) '0') in
String.set str 0 (if sign_r = -1 then '-' else '+');
String.set str 1 '1';
String.set str (l - n) '.';
str
end else (* s can contain the final result *)
if l > n + 2
then begin (* |r| >= 1, set decimal point *)
let l2 = (pred l) - n in
String.blit s l2 s (succ l2) n;
String.set s l2 '.'; s
end else begin (* |r| < 1, there must be 0-characters *)
(* before the significant development, *)
(* with care to the sign of the number *)
let size = n + 3 in
let m = size - l + 2
and str = String.make size '0' in
(String.blit (if sign_r = 1 then "+0." else "-0.") 0 str 0 3);
(String.blit s 1 str m (l - 2));
str
end
else begin
let s = string_of_big_int
(div_big_int
(abs_big_int r.numerator)
(base_power_big_int
10 (-n) r.denominator)) in
let len = succ (String.length s) in
let s' = String.make len '0' in
String.set s' 0 (if sign_r = -1 then '-' else '+');
String.blit s 0 s' 1 (pred len);
s'
end
(* Number of digits of the decimal representation of an int *)
let num_decimal_digits_int n =
String.length (string_of_int n)
(* Approximation with floating decimal point *)
(* This is an odd function and the last digit is round off *)
(* Format (+/-)(0. n_first_digits e msd)/(1. n_zeros e (msd+1) *)
let approx_ratio_exp n r =
(* Don't need to normalize *)
if (null_denominator r) then failwith_zero "approx_ratio_exp"
else if n <= 0 then invalid_arg "approx_ratio_exp"
else
let sign_r = sign_ratio r
and i = ref (n + 3) in
if sign_r = 0
then
let s = String.make (n + 5) '0' in
(String.blit "+0." 0 s 0 3);
(String.blit "e0" 0 s !i 2); s
else
let msd = msd_ratio (abs_ratio r) in
let k = n - msd in
let s =
(let nat = nat_of_big_int
(if k < 0
then
div_big_int (abs_big_int r.numerator)
(base_power_big_int 10 (-k)
r.denominator)
else
div_big_int (base_power_big_int
10 k (abs_big_int r.numerator))
r.denominator) in
string_of_nat nat) in
if (round_futur_last_digit s 0 (String.length s))
then
let m = num_decimal_digits_int (succ msd) in
let str = String.make (n + m + 4) '0' in
(String.blit (if sign_r = -1 then "-1." else "+1.") 0 str 0 3);
String.set str !i ('e');
incr i;
(if m = 0
then String.set str !i '0'
else String.blit (string_of_int (succ msd)) 0 str !i m);
str
else
let m = num_decimal_digits_int (succ msd)
and p = n + 3 in
let str = String.make (succ (m + p)) '0' in
(String.blit (if sign_r = -1 then "-0." else "+0.") 0 str 0 3);
(String.blit s 0 str 3 n);
String.set str p 'e';
(if m = 0
then String.set str (succ p) '0'
else (String.blit (string_of_int (succ msd)) 0 str (succ p) m));
str
(* String approximation of a rational with a fixed number of significant *)
(* digits printed *)
let float_of_rational_string r =
let s = approx_ratio_exp !floating_precision r in
if String.get s 0 = '+'
then (String.sub s 1 (pred (String.length s)))
else s
(* Coercions with type string *)
let string_of_ratio r =
cautious_normalize_ratio_when_printing r;
if !approx_printing_flag
then float_of_rational_string r
else string_of_big_int r.numerator ^ "/" ^ string_of_big_int r.denominator
(* XL: j'ai puissamment simplifie "ratio_of_string" en virant la notation
scientifique. *)
let ratio_of_string s =
let n = index_char s '/' 0 in
if n = -1 then
{ numerator = big_int_of_string s;
denominator = unit_big_int;
normalized = true }
else
create_ratio (sys_big_int_of_string s 0 n)
(sys_big_int_of_string s (n+1) (String.length s - n - 1))
(* Coercion with type float *)
let float_of_ratio r =
float_of_string (float_of_rational_string r)
(* XL: suppression de ratio_of_float *)
let power_ratio_positive_int r n =
create_ratio (power_big_int_positive_int (r.numerator) n)
(power_big_int_positive_int (r.denominator) n)
let power_ratio_positive_big_int r bi =
create_ratio (power_big_int_positive_big_int (r.numerator) bi)
(power_big_int_positive_big_int (r.denominator) bi)