ocaml/typing/typetexp.ml

248 lines
8.0 KiB
OCaml

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Typechecking of type expressions for the core language *)
open Misc
open Parsetree
open Types
open Ctype
exception Already_bound
type error =
Unbound_type_variable of string
| Unbound_type_constructor of Longident.t
| Type_arity_mismatch of Longident.t * int * int
| Bound_type_variable of string
| Recursive_type
| Unbound_class of Longident.t
| Unbound_row_variable of Longident.t
| Type_mismatch of type_expr * type_expr
exception Error of Location.t * error
(* Translation of type expressions *)
let type_variables = ref (Tbl.empty : (string, type_expr) Tbl.t)
let true_type_variables = ref []
let reset_type_variables () =
reset_global_level ();
type_variables := Tbl.empty;
true_type_variables := []
let enter_type_variable strict name =
try
let v = Tbl.find name !type_variables in
if strict then raise Already_bound;
v
with Not_found ->
let v = new_global_var() in
type_variables := Tbl.add name v !type_variables;
v
let type_variable loc name =
try
Tbl.find name !type_variables
with Not_found ->
raise(Error(loc, Unbound_type_variable name))
let type_variable_list () =
!true_type_variables
let rec transl_simple_type env fixed styp =
match styp.ptyp_desc with
Ptyp_var name ->
begin try
Tbl.find name !type_variables
with Not_found ->
if fixed then
raise(Error(styp.ptyp_loc, Unbound_type_variable name))
else begin
let v = new_global_var() in
type_variables := Tbl.add name v !type_variables;
true_type_variables := v :: !true_type_variables;
v
end
end
| Ptyp_arrow(st1, st2) ->
let ty1 = transl_simple_type env fixed st1 in
let ty2 = transl_simple_type env fixed st2 in
Ctype.newty (Tarrow(ty1, ty2))
| Ptyp_tuple stl ->
Ctype.newty (Ttuple(List.map (transl_simple_type env fixed) stl))
| Ptyp_constr(lid, stl, alias) ->
let (path, decl) =
try
Env.lookup_type lid env
with Not_found ->
raise(Error(styp.ptyp_loc, Unbound_type_constructor lid)) in
if List.length stl <> decl.type_arity then
raise(Error(styp.ptyp_loc, Type_arity_mismatch(lid, decl.type_arity,
List.length stl)));
let (cstr, params) =
begin match alias with
None ->
let tl = List.map (transl_simple_type env fixed) stl in
(newty (Tconstr(path, tl, ref [])), tl)
| Some alias ->
let cstr = newvar () in
begin try
Tbl.find alias !type_variables;
raise(Error(styp.ptyp_loc, Bound_type_variable alias))
with Not_found ->
type_variables := Tbl.add alias cstr !type_variables
end;
let tl = List.map (transl_simple_type env fixed) stl in
begin try
occur env cstr
(Ctype.expand_abbrev env path tl (ref []) cstr.level)
with
Unify _ -> raise(Error(styp.ptyp_loc, Recursive_type))
| Cannot_expand -> ()
end;
cstr.desc <- Tconstr(path, tl, ref []);
(cstr, tl)
end
in
begin match decl.type_manifest with
Some _ ->
List.iter2
(fun ty (sty, ty') ->
try Ctype.unify env (Ctype.instance ty) ty' with
Unify _ ->
raise (Error(sty.ptyp_loc, Type_mismatch(ty, ty'))))
decl.type_params (List.combine stl params)
| _ ->
()
end;
cstr
| Ptyp_object(fields, None) ->
newobj (transl_fields env fixed fields)
| Ptyp_object(fields, Some alias) ->
begin try
Tbl.find alias !type_variables;
raise(Error(styp.ptyp_loc, Bound_type_variable alias))
with Not_found ->
let obj = newvar () in
type_variables := Tbl.add alias obj !type_variables;
obj.desc <- Tobject (transl_fields env fixed fields, ref None);
obj
end
| Ptyp_class(lid, stl, alias) ->
if fixed then
raise(Error(styp.ptyp_loc, Unbound_row_variable lid));
let lid2 =
match lid with
Longident.Lident s -> Longident.Lident ("#" ^ s)
| Longident.Ldot(r, s) -> Longident.Ldot (r, "#" ^ s)
| Longident.Lapply(_, _) -> fatal_error "Typetexp.transl_simple_type"
in
let (path, decl) =
try
Env.lookup_type lid2 env
with Not_found ->
raise(Error(styp.ptyp_loc, Unbound_class lid)) in
if List.length stl <> decl.type_arity then
raise(Error(styp.ptyp_loc, Type_arity_mismatch(lid, decl.type_arity,
List.length stl)));
let v = new_global_var () in
let (ty, params) =
begin match alias with
None ->
let tl = List.map (transl_simple_type env fixed) stl in
(expand_abbrev env path tl (ref []) v.level, tl)
| Some alias ->
begin try
Tbl.find alias !type_variables;
raise(Error(styp.ptyp_loc, Bound_type_variable alias))
with Not_found ->
type_variables := Tbl.add alias v !type_variables
end;
let tl = List.map (transl_simple_type env fixed) stl in
let cstr = expand_abbrev env path tl (ref []) v.level in
v.desc <- Tlink cstr;
(v, tl)
end
in
begin match decl.type_manifest with
Some _ ->
List.iter2
(fun ty (sty, ty') ->
try Ctype.unify env (Ctype.instance ty) ty' with
Unify _ ->
raise (Error(sty.ptyp_loc, Type_mismatch(ty, ty'))))
decl.type_params (List.combine stl params)
| _ ->
()
end;
ty
and transl_fields env fixed =
function
[] ->
newty Tnil
| {pfield_desc = Pfield_var} as field::_ ->
if fixed then
raise(Error(field.pfield_loc, Unbound_type_variable ".."));
newvar ()
| {pfield_desc = Pfield(s, e)}::l ->
let ty1 = transl_simple_type env fixed e in
let ty2 = transl_fields env fixed l in
newty (Tfield (s, ty1, ty2))
let transl_type_scheme env styp =
reset_type_variables();
begin_def();
let typ = transl_simple_type env false styp in
end_def();
generalize typ;
typ
(* Error report *)
open Format
open Printtyp
let report_error = function
Unbound_type_variable name ->
print_string "Unbound type parameter "; print_string name
| Unbound_type_constructor lid ->
print_string "Unbound type constructor "; longident lid
| Type_arity_mismatch(lid, expected, provided) ->
open_hovbox 0;
print_string "The type constructor "; longident lid;
print_space(); print_string "expects "; print_int expected;
print_string " argument(s),"; print_space();
print_string "but is here applied to "; print_int provided;
print_string " argument(s)";
close_box()
| Bound_type_variable name ->
print_string "Already bound type parameter "; print_string name
| Recursive_type ->
print_string "This type is recursive"
| Unbound_class lid ->
print_string "Unbound class "; longident lid
| Unbound_row_variable lid ->
print_string "Unbound row variable in #"; longident lid
| Type_mismatch (ty, ty') ->
Printtyp.reset ();
Printtyp.mark_loops ty; Printtyp.mark_loops ty';
open_hovbox 0;
print_string "This parameter ";
Printtyp.type_expr ty';
print_string " should be an instance of ";
Printtyp.type_expr ty