(***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* Automatique. Distributed only by permission. *) (* *) (***********************************************************************) (* $Id$ *) (* Typechecking of type expressions for the core language *) open Misc open Parsetree open Types open Ctype exception Already_bound type error = Unbound_type_variable of string | Unbound_type_constructor of Longident.t | Type_arity_mismatch of Longident.t * int * int | Bound_type_variable of string | Recursive_type | Unbound_class of Longident.t | Unbound_row_variable of Longident.t | Type_mismatch of type_expr * type_expr exception Error of Location.t * error (* Translation of type expressions *) let type_variables = ref (Tbl.empty : (string, type_expr) Tbl.t) let true_type_variables = ref [] let reset_type_variables () = reset_global_level (); type_variables := Tbl.empty; true_type_variables := [] let enter_type_variable strict name = try let v = Tbl.find name !type_variables in if strict then raise Already_bound; v with Not_found -> let v = new_global_var() in type_variables := Tbl.add name v !type_variables; v let type_variable loc name = try Tbl.find name !type_variables with Not_found -> raise(Error(loc, Unbound_type_variable name)) let type_variable_list () = !true_type_variables let rec transl_simple_type env fixed styp = match styp.ptyp_desc with Ptyp_var name -> begin try Tbl.find name !type_variables with Not_found -> if fixed then raise(Error(styp.ptyp_loc, Unbound_type_variable name)) else begin let v = new_global_var() in type_variables := Tbl.add name v !type_variables; true_type_variables := v :: !true_type_variables; v end end | Ptyp_arrow(st1, st2) -> let ty1 = transl_simple_type env fixed st1 in let ty2 = transl_simple_type env fixed st2 in Ctype.newty (Tarrow(ty1, ty2)) | Ptyp_tuple stl -> Ctype.newty (Ttuple(List.map (transl_simple_type env fixed) stl)) | Ptyp_constr(lid, stl, alias) -> let (path, decl) = try Env.lookup_type lid env with Not_found -> raise(Error(styp.ptyp_loc, Unbound_type_constructor lid)) in if List.length stl <> decl.type_arity then raise(Error(styp.ptyp_loc, Type_arity_mismatch(lid, decl.type_arity, List.length stl))); let (cstr, params) = begin match alias with None -> let tl = List.map (transl_simple_type env fixed) stl in (newty (Tconstr(path, tl, ref [])), tl) | Some alias -> let cstr = newvar () in begin try Tbl.find alias !type_variables; raise(Error(styp.ptyp_loc, Bound_type_variable alias)) with Not_found -> type_variables := Tbl.add alias cstr !type_variables end; let tl = List.map (transl_simple_type env fixed) stl in begin try occur env cstr (Ctype.expand_abbrev env path tl (ref []) cstr.level) with Unify _ -> raise(Error(styp.ptyp_loc, Recursive_type)) | Cannot_expand -> () end; cstr.desc <- Tconstr(path, tl, ref []); (cstr, tl) end in begin match decl.type_manifest with Some _ -> List.iter2 (fun ty (sty, ty') -> try Ctype.unify env (Ctype.instance ty) ty' with Unify _ -> raise (Error(sty.ptyp_loc, Type_mismatch(ty, ty')))) decl.type_params (List.combine stl params) | _ -> () end; cstr | Ptyp_object(fields, None) -> newobj (transl_fields env fixed fields) | Ptyp_object(fields, Some alias) -> begin try Tbl.find alias !type_variables; raise(Error(styp.ptyp_loc, Bound_type_variable alias)) with Not_found -> let obj = newvar () in type_variables := Tbl.add alias obj !type_variables; obj.desc <- Tobject (transl_fields env fixed fields, ref None); obj end | Ptyp_class(lid, stl, alias) -> if fixed then raise(Error(styp.ptyp_loc, Unbound_row_variable lid)); let lid2 = match lid with Longident.Lident s -> Longident.Lident ("#" ^ s) | Longident.Ldot(r, s) -> Longident.Ldot (r, "#" ^ s) | Longident.Lapply(_, _) -> fatal_error "Typetexp.transl_simple_type" in let (path, decl) = try Env.lookup_type lid2 env with Not_found -> raise(Error(styp.ptyp_loc, Unbound_class lid)) in if List.length stl <> decl.type_arity then raise(Error(styp.ptyp_loc, Type_arity_mismatch(lid, decl.type_arity, List.length stl))); let v = new_global_var () in let (ty, params) = begin match alias with None -> let tl = List.map (transl_simple_type env fixed) stl in (expand_abbrev env path tl (ref []) v.level, tl) | Some alias -> begin try Tbl.find alias !type_variables; raise(Error(styp.ptyp_loc, Bound_type_variable alias)) with Not_found -> type_variables := Tbl.add alias v !type_variables end; let tl = List.map (transl_simple_type env fixed) stl in let cstr = expand_abbrev env path tl (ref []) v.level in v.desc <- Tlink cstr; (v, tl) end in begin match decl.type_manifest with Some _ -> List.iter2 (fun ty (sty, ty') -> try Ctype.unify env (Ctype.instance ty) ty' with Unify _ -> raise (Error(sty.ptyp_loc, Type_mismatch(ty, ty')))) decl.type_params (List.combine stl params) | _ -> () end; ty and transl_fields env fixed = function [] -> newty Tnil | {pfield_desc = Pfield_var} as field::_ -> if fixed then raise(Error(field.pfield_loc, Unbound_type_variable "..")); newvar () | {pfield_desc = Pfield(s, e)}::l -> let ty1 = transl_simple_type env fixed e in let ty2 = transl_fields env fixed l in newty (Tfield (s, ty1, ty2)) let transl_type_scheme env styp = reset_type_variables(); begin_def(); let typ = transl_simple_type env false styp in end_def(); generalize typ; typ (* Error report *) open Format open Printtyp let report_error = function Unbound_type_variable name -> print_string "Unbound type parameter "; print_string name | Unbound_type_constructor lid -> print_string "Unbound type constructor "; longident lid | Type_arity_mismatch(lid, expected, provided) -> open_hovbox 0; print_string "The type constructor "; longident lid; print_space(); print_string "expects "; print_int expected; print_string " argument(s),"; print_space(); print_string "but is here applied to "; print_int provided; print_string " argument(s)"; close_box() | Bound_type_variable name -> print_string "Already bound type parameter "; print_string name | Recursive_type -> print_string "This type is recursive" | Unbound_class lid -> print_string "Unbound class "; longident lid | Unbound_row_variable lid -> print_string "Unbound row variable in #"; longident lid | Type_mismatch (ty, ty') -> Printtyp.reset (); Printtyp.mark_loops ty; Printtyp.mark_loops ty'; open_hovbox 0; print_string "This parameter "; Printtyp.type_expr ty'; print_string " should be an instance of "; Printtyp.type_expr ty