79 lines
1.7 KiB
OCaml
79 lines
1.7 KiB
OCaml
(* Pi digits computed with the sreaming algorithm given on pages 4, 6
|
|
& 7 of "Unbounded Spigot Algorithms for the Digits of Pi", Jeremy
|
|
Gibbons, August 2004. *)
|
|
|
|
open Printf;;
|
|
open Big_int;;
|
|
|
|
let ( !$ ) = Big_int.big_int_of_int
|
|
and ( +$ ) = Big_int.add_big_int
|
|
and ( *$ ) = Big_int.mult_big_int
|
|
and ( =$ ) = Big_int.eq_big_int
|
|
;;
|
|
|
|
let zero = Big_int.zero_big_int
|
|
and one = Big_int.unit_big_int
|
|
and three = !$ 3
|
|
and four = !$ 4
|
|
and ten = !$ 10
|
|
and neg_ten = !$(-10)
|
|
;;
|
|
|
|
(* Linear Fractional (aka M=F6bius) Transformations *)
|
|
module LFT = struct
|
|
|
|
let floor_ev (q, r, s, t) x = div_big_int (q *$ x +$ r) (s *$ x +$ t);;
|
|
|
|
let unit = (one, zero, zero, one);;
|
|
|
|
let comp (q, r, s, t) (q', r', s', t') =
|
|
(q *$ q' +$ r *$ s', q *$ r' +$ r *$ t',
|
|
s *$ q' +$ t *$ s', s *$ r' +$ t *$ t')
|
|
;;
|
|
|
|
end
|
|
;;
|
|
|
|
let next z = LFT.floor_ev z three
|
|
and safe z n = (n =$ LFT.floor_ev z four)
|
|
and prod z n = LFT.comp (ten, neg_ten *$ n, zero, one) z
|
|
and cons z k =
|
|
let den = 2 * k + 1 in
|
|
LFT.comp z (!$ k, !$(2 * den), zero, !$ den)
|
|
;;
|
|
|
|
let rec digit k z n row col =
|
|
if n > 0 then
|
|
let y = next z in
|
|
if safe z y then
|
|
if col = 10 then (
|
|
let row = row + 10 in
|
|
printf "\t:%i\n%s" row (string_of_big_int y);
|
|
digit k (prod z y) (n - 1) row 1
|
|
)
|
|
else (
|
|
print_string(string_of_big_int y);
|
|
digit k (prod z y) (n - 1) row (col + 1)
|
|
)
|
|
else digit (k + 1) (cons z k) n row col
|
|
else
|
|
printf "%*s\t:%i\n" (10 - col) "" (row + col)
|
|
;;
|
|
|
|
let digits n = digit 1 LFT.unit n 0 0
|
|
;;
|
|
|
|
let usage () =
|
|
prerr_endline "Usage: pi_big_int <number of digits to compute for pi>";
|
|
exit 2
|
|
;;
|
|
|
|
let main () =
|
|
let args = Sys.argv in
|
|
if Array.length args <> 2 then usage () else
|
|
digits (int_of_string Sys.argv.(1))
|
|
;;
|
|
|
|
main ()
|
|
;;
|