ocaml/testsuite/tests/lib-num-2/pi_big_int.ml

79 lines
1.7 KiB
OCaml
Raw Normal View History

(* Pi digits computed with the sreaming algorithm given on pages 4, 6
& 7 of "Unbounded Spigot Algorithms for the Digits of Pi", Jeremy
Gibbons, August 2004. *)
open Printf;;
open Big_int;;
let ( !$ ) = Big_int.big_int_of_int
and ( +$ ) = Big_int.add_big_int
and ( *$ ) = Big_int.mult_big_int
and ( =$ ) = Big_int.eq_big_int
;;
let zero = Big_int.zero_big_int
and one = Big_int.unit_big_int
and three = !$ 3
and four = !$ 4
and ten = !$ 10
and neg_ten = !$(-10)
;;
(* Linear Fractional (aka M=F6bius) Transformations *)
module LFT = struct
let floor_ev (q, r, s, t) x = div_big_int (q *$ x +$ r) (s *$ x +$ t);;
let unit = (one, zero, zero, one);;
let comp (q, r, s, t) (q', r', s', t') =
(q *$ q' +$ r *$ s', q *$ r' +$ r *$ t',
s *$ q' +$ t *$ s', s *$ r' +$ t *$ t')
;;
end
;;
let next z = LFT.floor_ev z three
and safe z n = (n =$ LFT.floor_ev z four)
and prod z n = LFT.comp (ten, neg_ten *$ n, zero, one) z
and cons z k =
let den = 2 * k + 1 in
LFT.comp z (!$ k, !$(2 * den), zero, !$ den)
;;
let rec digit k z n row col =
if n > 0 then
let y = next z in
if safe z y then
if col = 10 then (
let row = row + 10 in
printf "\t:%i\n%s" row (string_of_big_int y);
digit k (prod z y) (n - 1) row 1
)
else (
print_string(string_of_big_int y);
digit k (prod z y) (n - 1) row (col + 1)
)
else digit (k + 1) (cons z k) n row col
else
printf "%*s\t:%i\n" (10 - col) "" (row + col)
;;
let digits n = digit 1 LFT.unit n 0 0
;;
let usage () =
prerr_endline "Usage: pi_big_int <number of digits to compute for pi>";
exit 2
;;
let main () =
let args = Sys.argv in
if Array.length args <> 2 then usage () else
digits (int_of_string Sys.argv.(1))
;;
main ()
;;