ocaml/asmcomp/selectgen.ml

1252 lines
44 KiB
OCaml
Raw Normal View History

(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Selection of pseudo-instructions, assignment of pseudo-registers,
sequentialization. *)
open Cmm
open Reg
open Mach
2018-07-23 05:19:41 -07:00
module Int = Numbers.Int
2018-09-26 01:50:42 -07:00
module V = Backend_var
module VP = Backend_var.With_provenance
2018-07-23 05:19:41 -07:00
type environment =
2018-09-26 01:50:42 -07:00
{ vars : (Reg.t array * Backend_var.Provenance.t option) V.Map.t;
2018-07-23 05:19:41 -07:00
static_exceptions : Reg.t array list Int.Map.t;
2016-05-17 06:49:17 -07:00
(** Which registers must be populated when jumping to the given
handler. *)
}
2018-09-26 01:50:42 -07:00
let env_add var regs env =
let provenance = VP.provenance var in
let var = VP.var var in
{ env with vars = V.Map.add var (regs, provenance) env.vars }
2016-05-17 06:49:17 -07:00
let env_add_static_exception id v env =
2018-07-23 05:19:41 -07:00
{ env with static_exceptions = Int.Map.add id v env.static_exceptions }
let env_find id env =
2018-09-26 01:50:42 -07:00
let regs, _provenance = V.Map.find id env.vars in
regs
2016-05-17 06:49:17 -07:00
let env_find_static_exception id env =
2018-07-23 05:19:41 -07:00
Int.Map.find id env.static_exceptions
2016-05-17 06:49:17 -07:00
let env_empty = {
2018-09-26 01:50:42 -07:00
vars = V.Map.empty;
2018-07-23 05:19:41 -07:00
static_exceptions = Int.Map.empty;
2016-05-17 06:49:17 -07:00
}
(* Infer the type of the result of an operation *)
let oper_result_type = function
2016-10-12 06:13:05 -07:00
Capply ty -> ty
| Cextcall(_s, ty, _alloc, _) -> ty
2017-02-15 03:14:10 -08:00
| Cload (c, _) ->
begin match c with
| Word_val -> typ_val
| Single | Double | Double_u -> typ_float
| _ -> typ_int
end
2016-10-12 06:13:05 -07:00
| Calloc -> typ_val
| Cstore (_c, _) -> typ_void
| Caddi | Csubi | Cmuli | Cmulhi | Cdivi | Cmodi |
Cand | Cor | Cxor | Clsl | Clsr | Casr |
Ccmpi _ | Ccmpa _ | Ccmpf _ -> typ_int
| Caddv -> typ_val
| Cadda -> typ_addr
| Cnegf | Cabsf | Caddf | Csubf | Cmulf | Cdivf -> typ_float
| Cfloatofint -> typ_float
| Cintoffloat -> typ_int
| Craise _ -> typ_void
2016-10-12 06:13:05 -07:00
| Ccheckbound -> typ_void
2017-02-15 03:14:10 -08:00
(* Infer the size in bytes of the result of an expression whose evaluation
may be deferred (cf. [emit_parts]). *)
let size_expr (env:environment) exp =
let rec size localenv = function
Cconst_int _ | Cconst_natint _ -> Arch.size_int
| Cconst_symbol _ | Cconst_pointer _ | Cconst_natpointer _ ->
Arch.size_addr
| Cconst_float _ -> Arch.size_float
| Cblockheader _ -> Arch.size_int
| Cvar id ->
begin try
2018-09-26 01:50:42 -07:00
V.Map.find id localenv
with Not_found ->
try
let regs = env_find id env in
size_machtype (Array.map (fun r -> r.typ) regs)
with Not_found ->
Misc.fatal_error("Selection.size_expr: unbound var " ^
V.unique_name id)
end
| Ctuple el ->
List.fold_right (fun e sz -> size localenv e + sz) el 0
2016-10-12 06:13:05 -07:00
| Cop(op, _, _) ->
size_machtype(oper_result_type op)
| Clet(id, arg, body) ->
2018-09-26 01:50:42 -07:00
size (V.Map.add (VP.var id) (size localenv arg) localenv) body
| Csequence(_e1, e2) ->
size localenv e2
| _ ->
Misc.fatal_error "Selection.size_expr"
2018-09-26 01:50:42 -07:00
in size V.Map.empty exp
(* Swap the two arguments of an integer comparison *)
let swap_intcomp = function
Isigned cmp -> Isigned(swap_integer_comparison cmp)
| Iunsigned cmp -> Iunsigned(swap_integer_comparison cmp)
(* Naming of registers *)
let all_regs_anonymous rv =
try
for i = 0 to Array.length rv - 1 do
if not (Reg.anonymous rv.(i)) then raise Exit
done;
true
with Exit ->
false
let name_regs id rv =
2018-09-26 01:50:42 -07:00
let id = VP.var id in
if Array.length rv = 1 then
2018-09-26 01:50:42 -07:00
rv.(0).raw_name <- Raw_name.create_from_var id
else
for i = 0 to Array.length rv - 1 do
2018-09-26 01:50:42 -07:00
rv.(i).raw_name <- Raw_name.create_from_var id;
rv.(i).part <- Some i
done
(* "Join" two instruction sequences, making sure they return their results
in the same registers. *)
let join opt_r1 seq1 opt_r2 seq2 =
match (opt_r1, opt_r2) with
(None, _) -> opt_r2
| (_, None) -> opt_r1
| (Some r1, Some r2) ->
let l1 = Array.length r1 in
assert (l1 = Array.length r2);
let r = Array.make l1 Reg.dummy in
for i = 0 to l1-1 do
2016-04-28 07:00:18 -07:00
if Reg.anonymous r1.(i)
&& Cmm.ge_component r1.(i).typ r2.(i).typ
then begin
r.(i) <- r1.(i);
seq2#insert_move r2.(i) r1.(i)
2016-04-28 07:00:18 -07:00
end else if Reg.anonymous r2.(i)
&& Cmm.ge_component r2.(i).typ r1.(i).typ
then begin
r.(i) <- r2.(i);
seq1#insert_move r1.(i) r2.(i)
end else begin
2016-04-28 07:00:18 -07:00
let typ = Cmm.lub_component r1.(i).typ r2.(i).typ in
r.(i) <- Reg.create typ;
seq1#insert_move r1.(i) r.(i);
seq2#insert_move r2.(i) r.(i)
end
done;
Some r
(* Same, for N branches *)
let join_array rs =
let some_res = ref None in
for i = 0 to Array.length rs - 1 do
let (r, _) = rs.(i) in
2016-06-16 07:54:17 -07:00
match r with
| None -> ()
| Some r ->
match !some_res with
| None -> some_res := Some (r, Array.map (fun r -> r.typ) r)
| Some (r', types) ->
let types =
Array.map2 (fun r typ -> Cmm.lub_component r.typ typ) r types
in
some_res := Some (r', types)
done;
match !some_res with
None -> None
2016-06-16 07:54:17 -07:00
| Some (template, types) ->
let size_res = Array.length template in
let res = Array.make size_res Reg.dummy in
for i = 0 to size_res - 1 do
2016-06-16 07:54:17 -07:00
res.(i) <- Reg.create types.(i)
done;
for i = 0 to Array.length rs - 1 do
let (r, s) = rs.(i) in
match r with
None -> ()
| Some r -> s#insert_moves r res
done;
Some res
(* Name of function being compiled *)
let current_function_name = ref ""
2017-02-15 03:14:10 -08:00
module Effect = struct
type t =
| None
| Raise
| Arbitrary
let join t1 t2 =
match t1, t2 with
| None, t2 -> t2
| t1, None -> t1
| Raise, Raise -> Raise
| Arbitrary, _ | _, Arbitrary -> Arbitrary
let pure = function
| None -> true
| Raise | Arbitrary -> false
end
module Coeffect = struct
type t =
| None
| Read_mutable
| Arbitrary
let join t1 t2 =
match t1, t2 with
| None, t2 -> t2
| t1, None -> t1
| Read_mutable, Read_mutable -> Read_mutable
| Arbitrary, _ | _, Arbitrary -> Arbitrary
let copure = function
| None -> true
| Read_mutable | Arbitrary -> false
end
module Effect_and_coeffect : sig
type t
val none : t
val arbitrary : t
val effect : t -> Effect.t
val coeffect : t -> Coeffect.t
val pure_and_copure : t -> bool
val effect_only : Effect.t -> t
val coeffect_only : Coeffect.t -> t
val join : t -> t -> t
val join_list_map : 'a list -> ('a -> t) -> t
end = struct
type t = Effect.t * Coeffect.t
let none = Effect.None, Coeffect.None
let arbitrary = Effect.Arbitrary, Coeffect.Arbitrary
let effect (e, _ce) = e
let coeffect (_e, ce) = ce
let pure_and_copure (e, ce) = Effect.pure e && Coeffect.copure ce
let effect_only e = e, Coeffect.None
let coeffect_only ce = Effect.None, ce
let join (e1, ce1) (e2, ce2) =
Effect.join e1 e2, Coeffect.join ce1 ce2
let join_list_map xs f =
match xs with
| [] -> none
| x::xs -> List.fold_left (fun acc x -> join acc (f x)) (f x) xs
end
(* The default instruction selection class *)
class virtual selector_generic = object (self)
2017-02-15 03:14:10 -08:00
(* A syntactic criterion used in addition to judgements about (co)effects as
to whether the evaluation of a given expression may be deferred by
[emit_parts]. This criterion is a property of the instruction selection
algorithm in this file rather than a property of the Cmm language.
*)
method is_simple_expr = function
Cconst_int _ -> true
| Cconst_natint _ -> true
| Cconst_float _ -> true
| Cconst_symbol _ -> true
| Cconst_pointer _ -> true
| Cconst_natpointer _ -> true
| Cblockheader _ -> true
| Cvar _ -> true
| Ctuple el -> List.for_all self#is_simple_expr el
| Clet(_id, arg, body) -> self#is_simple_expr arg && self#is_simple_expr body
2018-10-15 23:20:56 -07:00
| Cphantom_let(_var, _defining_expr, body) -> self#is_simple_expr body
| Csequence(e1, e2) -> self#is_simple_expr e1 && self#is_simple_expr e2
2017-02-15 03:14:10 -08:00
| Cop(op, args, _) ->
begin match op with
(* The following may have side effects *)
2016-10-12 06:13:05 -07:00
| Capply _ | Cextcall _ | Calloc | Cstore _ | Craise _ -> false
(* The remaining operations are simple if their args are *)
2017-02-15 03:14:10 -08:00
| Cload _ | Caddi | Csubi | Cmuli | Cmulhi | Cdivi | Cmodi | Cand | Cor
| Cxor | Clsl | Clsr | Casr | Ccmpi _ | Caddv | Cadda | Ccmpa _ | Cnegf
| Cabsf | Caddf | Csubf | Cmulf | Cdivf | Cfloatofint | Cintoffloat
| Ccmpf _ | Ccheckbound -> List.for_all self#is_simple_expr args
end
2017-02-15 03:14:10 -08:00
| Cassign _ | Cifthenelse _ | Cswitch _ | Cloop _ | Ccatch _ | Cexit _
| Ctrywith _ -> false
(* Analyses the effects and coeffects of an expression. This is used across
a whole list of expressions with a view to determining which expressions
may have their evaluation deferred. The result of this function, modulo
target-specific judgements if the [effects_of] method is overridden, is a
property of the Cmm language rather than anything particular about the
instruction selection algorithm in this file.
In the case of e.g. an OCaml function call, the arguments whose evaluation
cannot be deferred (cf. [emit_parts], below) are computed in right-to-left
order first with their results going into temporaries, then the block is
allocated, then the remaining arguments are evaluated before being
combined with the temporaries. *)
method effects_of exp =
let module EC = Effect_and_coeffect in
match exp with
| Cconst_int _ | Cconst_natint _ | Cconst_float _ | Cconst_symbol _
| Cconst_pointer _ | Cconst_natpointer _ | Cblockheader _
| Cvar _ -> EC.none
2017-02-15 03:14:10 -08:00
| Ctuple el -> EC.join_list_map el self#effects_of
| Clet (_id, arg, body) ->
EC.join (self#effects_of arg) (self#effects_of body)
2018-10-15 23:20:56 -07:00
| Cphantom_let (_var, _defining_expr, body) -> self#effects_of body
2017-02-15 03:14:10 -08:00
| Csequence (e1, e2) ->
EC.join (self#effects_of e1) (self#effects_of e2)
| Cifthenelse (cond, ifso, ifnot) ->
EC.join (self#effects_of cond)
(EC.join (self#effects_of ifso) (self#effects_of ifnot))
| Cop (op, args, _) ->
let from_op =
match op with
| Capply _ | Cextcall _ -> EC.arbitrary
| Calloc -> EC.none
| Cstore _ -> EC.effect_only Effect.Arbitrary
| Craise _ | Ccheckbound -> EC.effect_only Effect.Raise
| Cload (_, Asttypes.Immutable) -> EC.none
| Cload (_, Asttypes.Mutable) -> EC.coeffect_only Coeffect.Read_mutable
| Caddi | Csubi | Cmuli | Cmulhi | Cdivi | Cmodi | Cand | Cor | Cxor
| Clsl | Clsr | Casr | Ccmpi _ | Caddv | Cadda | Ccmpa _ | Cnegf | Cabsf
| Caddf | Csubf | Cmulf | Cdivf | Cfloatofint | Cintoffloat | Ccmpf _ ->
EC.none
in
EC.join from_op (EC.join_list_map args self#effects_of)
| Cassign _ | Cswitch _ | Cloop _ | Ccatch _ | Cexit _ | Ctrywith _ ->
EC.arbitrary
(* Says whether an integer constant is a suitable immediate argument *)
method virtual is_immediate : int -> bool
(* Selection of addressing modes *)
method virtual select_addressing :
Cmm.memory_chunk -> Cmm.expression -> Arch.addressing_mode * Cmm.expression
(* Default instruction selection for stores (of words) *)
method select_store is_assign addr arg =
(Istore(Word_val, addr, is_assign), arg)
(* call marking methods, documented in selectgen.mli *)
method mark_call =
Proc.contains_calls := true
method mark_tailcall = ()
method mark_c_tailcall = ()
method mark_instr = function
| Iop (Icall_ind _ | Icall_imm _ | Iextcall _) ->
self#mark_call
| Iop (Itailcall_ind _ | Itailcall_imm _) ->
self#mark_tailcall
| Iop (Ialloc _) ->
self#mark_call (* caml_alloc*, caml_garbage_collection *)
| Iop (Iintop (Icheckbound _) | Iintop_imm(Icheckbound _, _)) ->
self#mark_c_tailcall (* caml_ml_array_bound_error *)
| Iraise raise_kind ->
begin match raise_kind with
| Cmm.Raise_notrace -> ()
| Cmm.Raise_withtrace ->
(* PR#6239 *)
(* caml_stash_backtrace; we #mark_call rather than
#mark_c_tailcall to get a good stack backtrace *)
self#mark_call
end
| Itrywith _ ->
self#mark_call
| _ -> ()
(* Default instruction selection for operators *)
method select_allocation bytes =
Ialloc { bytes; spacetime_index = 0; label_after_call_gc = None; }
method select_allocation_args _env = [| |]
method select_checkbound () =
Icheckbound { spacetime_index = 0; label_after_error = None; }
method select_checkbound_extra_args () = []
2016-10-12 06:13:05 -07:00
method select_operation op args _dbg =
match (op, args) with
| (Capply _, Cconst_symbol func :: rem) ->
let label_after = Cmm.new_label () in
(Icall_imm { func; label_after; }, rem)
| (Capply _, _) ->
let label_after = Cmm.new_label () in
(Icall_ind { label_after; }, args)
2016-10-12 06:13:05 -07:00
| (Cextcall(func, _ty, alloc, label_after), _) ->
let label_after =
match label_after with
| None -> Cmm.new_label ()
| Some label_after -> label_after
in
Iextcall { func; alloc; label_after; }, args
2017-02-15 03:14:10 -08:00
| (Cload (chunk, _mut), [arg]) ->
let (addr, eloc) = self#select_addressing chunk arg in
(Iload(chunk, addr), [eloc])
2015-12-18 08:42:40 -08:00
| (Cstore (chunk, init), [arg1; arg2]) ->
let (addr, eloc) = self#select_addressing chunk arg1 in
2015-12-18 08:42:40 -08:00
let is_assign =
match init with
| Lambda.Root_initialization -> false
| Lambda.Heap_initialization -> false
2015-12-18 08:42:40 -08:00
| Lambda.Assignment -> true
in
if chunk = Word_int || chunk = Word_val then begin
2015-12-18 08:42:40 -08:00
let (op, newarg2) = self#select_store is_assign addr arg2 in
(op, [newarg2; eloc])
end else begin
2015-12-18 08:42:40 -08:00
(Istore(chunk, addr, is_assign), [arg2; eloc])
(* Inversion addr/datum in Istore *)
end
2016-10-12 06:13:05 -07:00
| (Calloc, _) -> (self#select_allocation 0), args
| (Caddi, _) -> self#select_arith_comm Iadd args
| (Csubi, _) -> self#select_arith Isub args
| (Cmuli, _) -> self#select_arith_comm Imul args
| (Cmulhi, _) -> self#select_arith_comm Imulh args
| (Cdivi, _) -> (Iintop Idiv, args)
| (Cmodi, _) -> (Iintop Imod, args)
| (Cand, _) -> self#select_arith_comm Iand args
| (Cor, _) -> self#select_arith_comm Ior args
| (Cxor, _) -> self#select_arith_comm Ixor args
| (Clsl, _) -> self#select_shift Ilsl args
| (Clsr, _) -> self#select_shift Ilsr args
| (Casr, _) -> self#select_shift Iasr args
| (Ccmpi comp, _) -> self#select_arith_comp (Isigned comp) args
| (Caddv, _) -> self#select_arith_comm Iadd args
| (Cadda, _) -> self#select_arith_comm Iadd args
| (Ccmpa comp, _) -> self#select_arith_comp (Iunsigned comp) args
| (Cnegf, _) -> (Inegf, args)
| (Cabsf, _) -> (Iabsf, args)
| (Caddf, _) -> (Iaddf, args)
| (Csubf, _) -> (Isubf, args)
| (Cmulf, _) -> (Imulf, args)
| (Cdivf, _) -> (Idivf, args)
| (Cfloatofint, _) -> (Ifloatofint, args)
| (Cintoffloat, _) -> (Iintoffloat, args)
2016-10-12 06:13:05 -07:00
| (Ccheckbound, _) ->
let extra_args = self#select_checkbound_extra_args () in
let op = self#select_checkbound () in
self#select_arith op (args @ extra_args)
| _ -> Misc.fatal_error "Selection.select_oper"
method private select_arith_comm op = function
[arg; Cconst_int n] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| [arg; Cconst_pointer n] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| [Cconst_int n; arg] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| [Cconst_pointer n; arg] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| args ->
(Iintop op, args)
method private select_arith op = function
[arg; Cconst_int n] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| [arg; Cconst_pointer n] when self#is_immediate n ->
(Iintop_imm(op, n), [arg])
| args ->
(Iintop op, args)
method private select_shift op = function
[arg; Cconst_int n] when n >= 0 && n < Arch.size_int * 8 ->
(Iintop_imm(op, n), [arg])
| args ->
(Iintop op, args)
method private select_arith_comp cmp = function
[arg; Cconst_int n] when self#is_immediate n ->
(Iintop_imm(Icomp cmp, n), [arg])
| [arg; Cconst_pointer n] when self#is_immediate n ->
(Iintop_imm(Icomp cmp, n), [arg])
| [Cconst_int n; arg] when self#is_immediate n ->
(Iintop_imm(Icomp(swap_intcomp cmp), n), [arg])
| [Cconst_pointer n; arg] when self#is_immediate n ->
(Iintop_imm(Icomp(swap_intcomp cmp), n), [arg])
| args ->
(Iintop(Icomp cmp), args)
(* Instruction selection for conditionals *)
method select_condition = function
2016-10-12 06:13:05 -07:00
Cop(Ccmpi cmp, [arg1; Cconst_int n], _) when self#is_immediate n ->
(Iinttest_imm(Isigned cmp, n), arg1)
2016-10-12 06:13:05 -07:00
| Cop(Ccmpi cmp, [Cconst_int n; arg2], _) when self#is_immediate n ->
(Iinttest_imm(Isigned(swap_integer_comparison cmp), n), arg2)
| Cop(Ccmpi cmp, [arg1; Cconst_pointer n], _) when self#is_immediate n ->
(Iinttest_imm(Isigned cmp, n), arg1)
| Cop(Ccmpi cmp, [Cconst_pointer n; arg2], _) when self#is_immediate n ->
(Iinttest_imm(Isigned(swap_integer_comparison cmp), n), arg2)
2016-10-12 06:13:05 -07:00
| Cop(Ccmpi cmp, args, _) ->
(Iinttest(Isigned cmp), Ctuple args)
| Cop(Ccmpa cmp, [arg1; Cconst_pointer n], _) when self#is_immediate n ->
(Iinttest_imm(Iunsigned cmp, n), arg1)
2016-10-12 06:13:05 -07:00
| Cop(Ccmpa cmp, [arg1; Cconst_int n], _) when self#is_immediate n ->
(Iinttest_imm(Iunsigned cmp, n), arg1)
| Cop(Ccmpa cmp, [Cconst_pointer n; arg2], _) when self#is_immediate n ->
(Iinttest_imm(Iunsigned(swap_integer_comparison cmp), n), arg2)
2016-10-12 06:13:05 -07:00
| Cop(Ccmpa cmp, [Cconst_int n; arg2], _) when self#is_immediate n ->
(Iinttest_imm(Iunsigned(swap_integer_comparison cmp), n), arg2)
2016-10-12 06:13:05 -07:00
| Cop(Ccmpa cmp, args, _) ->
(Iinttest(Iunsigned cmp), Ctuple args)
2016-10-12 06:13:05 -07:00
| Cop(Ccmpf cmp, args, _) ->
(Ifloattest cmp, Ctuple args)
2016-10-12 06:13:05 -07:00
| Cop(Cand, [arg; Cconst_int 1], _) ->
(Ioddtest, arg)
| arg ->
(Itruetest, arg)
(* Return an array of fresh registers of the given type.
Normally implemented as Reg.createv, but some
ports (e.g. Arm) can override this definition to store float values
in pairs of integer registers. *)
method regs_for tys = Reg.createv tys
(* Buffering of instruction sequences *)
val mutable instr_seq = dummy_instr
method insert_debug desc dbg arg res =
instr_seq <- instr_cons_debug desc arg res dbg instr_seq
method insert desc arg res =
instr_seq <- instr_cons desc arg res instr_seq
method extract_core ~end_instr =
let rec extract res i =
if i == dummy_instr
then res
else extract {i with next = res} i.next in
extract end_instr instr_seq
method extract =
self#extract_core ~end_instr:(end_instr ())
(* Insert a sequence of moves from one pseudoreg set to another. *)
method insert_move src dst =
if src.stamp <> dst.stamp then
self#insert (Iop Imove) [|src|] [|dst|]
method insert_moves src dst =
for i = 0 to min (Array.length src) (Array.length dst) - 1 do
self#insert_move src.(i) dst.(i)
done
(* Adjust the types of destination pseudoregs for a [Cassign] assignment.
The type inferred at [let] binding might be [Int] while we assign
something of type [Val] (PR#6501). *)
method adjust_type src dst =
let ts = src.typ and td = dst.typ in
if ts <> td then
match ts, td with
| Val, Int -> dst.typ <- Val
| Int, Val -> ()
| _, _ -> Misc.fatal_error("Selection.adjust_type: bad assignment to "
^ Reg.name dst)
method adjust_types src dst =
for i = 0 to min (Array.length src) (Array.length dst) - 1 do
self#adjust_type src.(i) dst.(i)
done
(* Insert moves and stack offsets for function arguments and results *)
method insert_move_args arg loc stacksize =
if stacksize <> 0 then self#insert (Iop(Istackoffset stacksize)) [||] [||];
self#insert_moves arg loc
method insert_move_results loc res stacksize =
if stacksize <> 0 then self#insert(Iop(Istackoffset(-stacksize))) [||] [||];
self#insert_moves loc res
(* Add an Iop opcode. Can be overridden by processor description
to insert moves before and after the operation, i.e. for two-address
instructions, or instructions using dedicated registers. *)
method insert_op_debug op dbg rs rd =
self#insert_debug (Iop op) dbg rs rd;
rd
method insert_op op rs rd =
self#insert_op_debug op Debuginfo.none rs rd
method emit_blockheader _env n _dbg =
let r = self#regs_for typ_int in
Some(self#insert_op (Iconst_int n) [||] r)
method about_to_emit_call _env _insn _arg = None
(* Prior to a function call, update the Spacetime node hole pointer hard
register. *)
method private maybe_emit_spacetime_move ~spacetime_reg =
Misc.Stdlib.Option.iter (fun reg ->
self#insert_moves reg [| Proc.loc_spacetime_node_hole |])
spacetime_reg
(* Add the instructions for the given expression
at the end of the self sequence *)
method emit_expr (env:environment) exp =
match exp with
Cconst_int n ->
let r = self#regs_for typ_int in
Some(self#insert_op (Iconst_int(Nativeint.of_int n)) [||] r)
| Cconst_natint n ->
let r = self#regs_for typ_int in
Some(self#insert_op (Iconst_int n) [||] r)
| Cconst_float n ->
let r = self#regs_for typ_float in
Some(self#insert_op (Iconst_float (Int64.bits_of_float n)) [||] r)
| Cconst_symbol n ->
let r = self#regs_for typ_val in
Some(self#insert_op (Iconst_symbol n) [||] r)
| Cconst_pointer n ->
let r = self#regs_for typ_val in (* integer as Caml value *)
Some(self#insert_op (Iconst_int(Nativeint.of_int n)) [||] r)
| Cconst_natpointer n ->
let r = self#regs_for typ_val in (* integer as Caml value *)
Some(self#insert_op (Iconst_int n) [||] r)
| Cblockheader(n, dbg) ->
self#emit_blockheader env n dbg
| Cvar v ->
begin try
Some(env_find v env)
with Not_found ->
Misc.fatal_error("Selection.emit_expr: unbound var " ^ V.unique_name v)
end
| Clet(v, e1, e2) ->
begin match self#emit_expr env e1 with
None -> None
| Some r1 -> self#emit_expr (self#bind_let env v r1) e2
end
2018-10-15 23:20:56 -07:00
| Cphantom_let (_var, _defining_expr, body) ->
self#emit_expr env body
| Cassign(v, e1) ->
let rv =
try
env_find v env
with Not_found ->
Misc.fatal_error ("Selection.emit_expr: unbound var " ^ V.name v) in
begin match self#emit_expr env e1 with
None -> None
| Some r1 -> self#adjust_types r1 rv; self#insert_moves r1 rv; Some [||]
end
| Ctuple [] ->
Some [||]
| Ctuple exp_list ->
begin match self#emit_parts_list env exp_list with
None -> None
| Some(simple_list, ext_env) ->
Some(self#emit_tuple ext_env simple_list)
end
2016-10-12 06:13:05 -07:00
| Cop(Craise k, [arg], dbg) ->
begin match self#emit_expr env arg with
None -> None
| Some r1 ->
let rd = [|Proc.loc_exn_bucket|] in
self#insert (Iop Imove) r1 rd;
self#insert_debug (Iraise k) dbg rd [||];
None
end
2016-10-12 06:13:05 -07:00
| Cop(Ccmpf _, _, _) ->
self#emit_expr env (Cifthenelse(exp, Cconst_int 1, Cconst_int 0))
2016-10-12 06:13:05 -07:00
| Cop(op, args, dbg) ->
begin match self#emit_parts_list env args with
None -> None
| Some(simple_args, env) ->
let ty = oper_result_type op in
2016-10-12 06:13:05 -07:00
let (new_op, new_args) = self#select_operation op simple_args dbg in
match new_op with
Icall_ind _ ->
let r1 = self#emit_tuple env new_args in
let rarg = Array.sub r1 1 (Array.length r1 - 1) in
let rd = self#regs_for ty in
let (loc_arg, stack_ofs) = Proc.loc_arguments rarg in
let loc_res = Proc.loc_results rd in
let spacetime_reg =
self#about_to_emit_call env (Iop new_op) [| r1.(0) |]
in
self#insert_move_args rarg loc_arg stack_ofs;
self#maybe_emit_spacetime_move ~spacetime_reg;
self#insert_debug (Iop new_op) dbg
(Array.append [|r1.(0)|] loc_arg) loc_res;
self#insert_move_results loc_res rd stack_ofs;
Some rd
| Icall_imm _ ->
let r1 = self#emit_tuple env new_args in
let rd = self#regs_for ty in
let (loc_arg, stack_ofs) = Proc.loc_arguments r1 in
let loc_res = Proc.loc_results rd in
let spacetime_reg =
self#about_to_emit_call env (Iop new_op) [| |]
in
self#insert_move_args r1 loc_arg stack_ofs;
self#maybe_emit_spacetime_move ~spacetime_reg;
self#insert_debug (Iop new_op) dbg loc_arg loc_res;
self#insert_move_results loc_res rd stack_ofs;
Some rd
| Iextcall _ ->
let spacetime_reg =
self#about_to_emit_call env (Iop new_op) [| |]
in
let (loc_arg, stack_ofs) = self#emit_extcall_args env new_args in
self#maybe_emit_spacetime_move ~spacetime_reg;
let rd = self#regs_for ty in
let loc_res =
self#insert_op_debug new_op dbg
loc_arg (Proc.loc_external_results rd) in
self#insert_move_results loc_res rd stack_ofs;
Some rd
| Ialloc { bytes = _; spacetime_index; label_after_call_gc; } ->
let rd = self#regs_for typ_val in
let bytes = size_expr env (Ctuple new_args) in
let op =
Ialloc { bytes; spacetime_index; label_after_call_gc; }
in
let args = self#select_allocation_args env in
self#insert_debug (Iop op) dbg args rd;
self#emit_stores env new_args rd;
Some rd
| op ->
let r1 = self#emit_tuple env new_args in
let rd = self#regs_for ty in
Some (self#insert_op_debug op dbg r1 rd)
end
| Csequence(e1, e2) ->
begin match self#emit_expr env e1 with
None -> None
| Some _ -> self#emit_expr env e2
end
| Cifthenelse(econd, eif, eelse) ->
let (cond, earg) = self#select_condition econd in
begin match self#emit_expr env earg with
None -> None
| Some rarg ->
let (rif, sif) = self#emit_sequence env eif in
let (relse, selse) = self#emit_sequence env eelse in
let r = join rif sif relse selse in
self#insert (Iifthenelse(cond, sif#extract, selse#extract))
rarg [||];
r
end
2016-10-12 06:13:05 -07:00
| Cswitch(esel, index, ecases, _dbg) ->
begin match self#emit_expr env esel with
None -> None
| Some rsel ->
let rscases = Array.map (self#emit_sequence env) ecases in
let r = join_array rscases in
self#insert (Iswitch(index,
Array.map (fun (_, s) -> s#extract) rscases))
rsel [||];
r
end
| Cloop(ebody) ->
let (_rarg, sbody) = self#emit_sequence env ebody in
self#insert (Iloop(sbody#extract)) [||] [||];
Some [||]
| Ccatch(_, [], e1) ->
self#emit_expr env e1
| Ccatch(rec_flag, handlers, body) ->
let handlers =
List.map (fun (nfail, ids, e2) ->
let rs =
List.map
2018-06-30 04:09:11 -07:00
(fun (id, typ) ->
let r = self#regs_for typ in name_regs id r; r)
ids in
(nfail, ids, rs, e2))
2016-05-17 06:49:17 -07:00
handlers
in
let env =
2016-05-17 06:49:17 -07:00
(* Since the handlers may be recursive, and called from the body,
the same environment is used for translating both the handlers and
the body. *)
List.fold_left (fun env (nfail, _ids, rs, _e2) ->
2016-05-17 06:49:17 -07:00
env_add_static_exception nfail rs env)
env handlers
in
let (r_body, s_body) = self#emit_sequence env body in
let translate_one_handler (nfail, ids, rs, e2) =
assert(List.length ids = List.length rs);
let new_env =
Allow non-val payload types in CMM Ccatch (#1833) Summary ------- This patch adds explicit type annotations for Ccatch payloads in the CMM IR, thus supporting payloads which are not of type `val`. Rationale --------- While CMM generated from OCaml source will always generate payloads of type `val`, this is not the case when targeting CMM to compile from a different language. As a concrete example, I am currently targeting the CMM backend for compilation of WebAssembly, and require `float` payloads. Additionally, @mshinwell has noted that such an extension will be useful for flambda2. As a result, this patch will increase the applicability of the CMM IR as a compilation target. Updates ------- 25/06/2018: Incorporate review comments by @xclerc Design ------ The design of the patch is as follows: 1. Add explicit type annotations to Ccatch handlers. Specifically, ```Ccatch (int * (Ident.t list) * expression)``` becomes ```Ccatch (int * (Ident.t * machtype) list * expression)``` 2. By default, in `cmmgen`, select `typ_val` as the `machtype` 3. Select an appropriate register using the type annotation in `selectgen`, instead of defaulting to `typ_val` 4. Test updates: - Update the CMM parser and pretty-printer to require annotations on Ccatch handlers - Update the existing CMM tests to add the required annotations - Add new tests which require the use of floating-point registers, for which the compiler would generate invalid ASM prior to this patch Since all OCaml code will use `typ_val` as before in `cmmgen` and therefore `selectgen`, compilation for OCaml programs will be identical.
2018-06-28 15:08:50 -07:00
List.fold_left (fun env ((id, _typ), r) -> env_add id r env)
2016-05-17 06:49:17 -07:00
env (List.combine ids rs)
in
let (r, s) = self#emit_sequence new_env e2 in
(nfail, (r, s))
in
2016-05-17 06:49:17 -07:00
let l = List.map translate_one_handler handlers in
let a = Array.of_list ((r_body, s_body) :: List.map snd l) in
let r = join_array a in
2016-05-17 06:49:17 -07:00
let aux (nfail, (_r, s)) = (nfail, s#extract) in
self#insert (Icatch (rec_flag, List.map aux l, s_body#extract)) [||] [||];
r
| Cexit (nfail,args) ->
begin match self#emit_parts_list env args with
None -> None
| Some (simple_list, ext_env) ->
let src = self#emit_tuple ext_env simple_list in
let dest_args =
2016-05-17 06:49:17 -07:00
try env_find_static_exception nfail env
with Not_found ->
Misc.fatal_error ("Selection.emit_expr: unbound label "^
2018-08-30 10:15:32 -07:00
Stdlib.Int.to_string nfail)
in
(* Intermediate registers to handle cases where some
registers from src are present in dest *)
let tmp_regs = Reg.createv_like src in
Allow non-val payload types in CMM Ccatch (#1833) Summary ------- This patch adds explicit type annotations for Ccatch payloads in the CMM IR, thus supporting payloads which are not of type `val`. Rationale --------- While CMM generated from OCaml source will always generate payloads of type `val`, this is not the case when targeting CMM to compile from a different language. As a concrete example, I am currently targeting the CMM backend for compilation of WebAssembly, and require `float` payloads. Additionally, @mshinwell has noted that such an extension will be useful for flambda2. As a result, this patch will increase the applicability of the CMM IR as a compilation target. Updates ------- 25/06/2018: Incorporate review comments by @xclerc Design ------ The design of the patch is as follows: 1. Add explicit type annotations to Ccatch handlers. Specifically, ```Ccatch (int * (Ident.t list) * expression)``` becomes ```Ccatch (int * (Ident.t * machtype) list * expression)``` 2. By default, in `cmmgen`, select `typ_val` as the `machtype` 3. Select an appropriate register using the type annotation in `selectgen`, instead of defaulting to `typ_val` 4. Test updates: - Update the CMM parser and pretty-printer to require annotations on Ccatch handlers - Update the existing CMM tests to add the required annotations - Add new tests which require the use of floating-point registers, for which the compiler would generate invalid ASM prior to this patch Since all OCaml code will use `typ_val` as before in `cmmgen` and therefore `selectgen`, compilation for OCaml programs will be identical.
2018-06-28 15:08:50 -07:00
(* Ccatch registers must not contain out of heap pointers *)
Array.iter (fun reg -> assert(reg.typ <> Addr)) src;
self#insert_moves src tmp_regs ;
self#insert_moves tmp_regs (Array.concat dest_args) ;
self#insert (Iexit nfail) [||] [||];
None
end
| Ctrywith(e1, v, e2) ->
let (r1, s1) = self#emit_sequence env e1 in
let rv = self#regs_for typ_val in
let (r2, s2) = self#emit_sequence (env_add v rv env) e2 in
let r = join r1 s1 r2 s2 in
self#insert
(Itrywith(s1#extract,
instr_cons (Iop Imove) [|Proc.loc_exn_bucket|] rv
(s2#extract)))
[||] [||];
r
method private emit_sequence (env:environment) exp =
let s = {< instr_seq = dummy_instr >} in
let r = s#emit_expr env exp in
(r, s)
method private bind_let (env:environment) v r1 =
if all_regs_anonymous r1 then begin
name_regs v r1;
env_add v r1 env
end else begin
let rv = Reg.createv_like r1 in
name_regs v rv;
self#insert_moves r1 rv;
env_add v rv env
end
2017-02-15 03:14:10 -08:00
(* The following two functions, [emit_parts] and [emit_parts_list], force
right-to-left evaluation order as required by the Flambda [Un_anf] pass
(and to be consistent with the bytecode compiler). *)
method private emit_parts (env:environment) ~effects_after exp =
let module EC = Effect_and_coeffect in
let may_defer_evaluation =
let ec = self#effects_of exp in
match EC.effect ec with
| Effect.Arbitrary | Effect.Raise ->
(* Preserve the ordering of effectful expressions by evaluating them
early (in the correct order) and assigning their results to
temporaries. We can avoid this in just one case: if we know that
every [exp'] in the original expression list (cf. [emit_parts_list])
to be evaluated after [exp] cannot possibly affect the result of
[exp] or depend on the result of [exp], then [exp] may be deferred.
(Checking purity here is not enough: we need to check copurity too
to avoid e.g. moving mutable reads earlier than the raising of
an exception.) *)
EC.pure_and_copure effects_after
| Effect.None ->
match EC.coeffect ec with
| Coeffect.None ->
(* Pure expressions may be moved. *)
true
| Coeffect.Read_mutable -> begin
(* Read-mutable expressions may only be deferred if evaluation of
every [exp'] (for [exp'] as in the comment above) has no effects
"worse" (in the sense of the ordering in [Effect.t]) than raising
an exception. *)
match EC.effect effects_after with
| Effect.None | Effect.Raise -> true
| Effect.Arbitrary -> false
end
| Coeffect.Arbitrary -> begin
(* Arbitrary expressions may only be deferred if evaluation of
every [exp'] (for [exp'] as in the comment above) has no effects. *)
match EC.effect effects_after with
| Effect.None -> true
| Effect.Arbitrary | Effect.Raise -> false
end
in
(* Even though some expressions may look like they can be deferred from
the (co)effect analysis, it may be forbidden to move them. *)
if may_defer_evaluation && self#is_simple_expr exp then
Some (exp, env)
else begin
match self#emit_expr env exp with
None -> None
| Some r ->
if Array.length r = 0 then
Some (Ctuple [], env)
else begin
(* The normal case *)
2018-09-26 01:50:42 -07:00
let id = V.create_local "bind" in
if all_regs_anonymous r then
(* r is an anonymous, unshared register; use it directly *)
2018-09-26 01:50:42 -07:00
Some (Cvar id, env_add (VP.create id) r env)
else begin
(* Introduce a fresh temp to hold the result *)
let tmp = Reg.createv_like r in
self#insert_moves r tmp;
2018-09-26 01:50:42 -07:00
Some (Cvar id, env_add (VP.create id) tmp env)
end
end
end
2017-02-15 03:14:10 -08:00
method private emit_parts_list (env:environment) exp_list =
let module EC = Effect_and_coeffect in
let exp_list_right_to_left, _effect =
(* Annotate each expression with the (co)effects that happen after it
when the original expression list is evaluated from right to left.
The resulting expression list has the rightmost expression first. *)
List.fold_left (fun (exp_list, effects_after) exp ->
let exp_effect = self#effects_of exp in
(exp, effects_after)::exp_list, EC.join exp_effect effects_after)
([], EC.none)
exp_list
in
List.fold_left (fun results_and_env (exp, effects_after) ->
match results_and_env with
| None -> None
| Some (result, env) ->
match self#emit_parts env exp ~effects_after with
| None -> None
| Some (exp_result, env) -> Some (exp_result :: result, env))
(Some ([], env))
exp_list_right_to_left
method private emit_tuple_not_flattened env exp_list =
let rec emit_list = function
[] -> []
| exp :: rem ->
(* Again, force right-to-left evaluation *)
let loc_rem = emit_list rem in
match self#emit_expr env exp with
None -> assert false (* should have been caught in emit_parts *)
| Some loc_exp -> loc_exp :: loc_rem
in
emit_list exp_list
method private emit_tuple env exp_list =
Array.concat (self#emit_tuple_not_flattened env exp_list)
method emit_extcall_args env args =
let args = self#emit_tuple_not_flattened env args in
let arg_hard_regs, stack_ofs =
Proc.loc_external_arguments (Array.of_list args)
in
(* Flattening [args] and [arg_hard_regs] causes parts of values split
across multiple registers to line up correctly, by virtue of the
semantics of [split_int64_for_32bit_target] in cmmgen.ml, and the
required semantics of [loc_external_arguments] (see proc.mli). *)
let args = Array.concat args in
let arg_hard_regs = Array.concat (Array.to_list arg_hard_regs) in
self#insert_move_args args arg_hard_regs stack_ofs;
arg_hard_regs, stack_ofs
method emit_stores env data regs_addr =
let a =
ref (Arch.offset_addressing Arch.identity_addressing (-Arch.size_int)) in
List.iter
(fun e ->
let (op, arg) = self#select_store false !a e in
match self#emit_expr env arg with
None -> assert false
| Some regs ->
match op with
Istore(_, _, _) ->
for i = 0 to Array.length regs - 1 do
let r = regs.(i) in
let kind = if r.typ = Float then Double_u else Word_val in
self#insert (Iop(Istore(kind, !a, false)))
(Array.append [|r|] regs_addr) [||];
a := Arch.offset_addressing !a (size_component r.typ)
done
| _ ->
self#insert (Iop op) (Array.append regs regs_addr) [||];
a := Arch.offset_addressing !a (size_expr env e))
data
(* Same, but in tail position *)
method private emit_return (env:environment) exp =
match self#emit_expr env exp with
None -> ()
| Some r ->
let loc = Proc.loc_results r in
self#insert_moves r loc;
self#insert Ireturn loc [||]
method emit_tail (env:environment) exp =
match exp with
Clet(v, e1, e2) ->
begin match self#emit_expr env e1 with
None -> ()
| Some r1 -> self#emit_tail (self#bind_let env v r1) e2
end
2018-10-15 23:20:56 -07:00
| Cphantom_let (_var, _defining_expr, body) ->
self#emit_tail env body
2016-10-12 06:13:05 -07:00
| Cop((Capply ty) as op, args, dbg) ->
begin match self#emit_parts_list env args with
None -> ()
| Some(simple_args, env) ->
2016-10-12 06:13:05 -07:00
let (new_op, new_args) = self#select_operation op simple_args dbg in
match new_op with
Icall_ind { label_after; } ->
let r1 = self#emit_tuple env new_args in
let rarg = Array.sub r1 1 (Array.length r1 - 1) in
let (loc_arg, stack_ofs) = Proc.loc_arguments rarg in
if stack_ofs = 0 then begin
let call = Iop (Itailcall_ind { label_after; }) in
let spacetime_reg =
self#about_to_emit_call env call [| r1.(0) |]
in
self#insert_moves rarg loc_arg;
self#maybe_emit_spacetime_move ~spacetime_reg;
self#insert_debug call dbg
(Array.append [|r1.(0)|] loc_arg) [||];
end else begin
let rd = self#regs_for ty in
let loc_res = Proc.loc_results rd in
let spacetime_reg =
self#about_to_emit_call env (Iop new_op) [| r1.(0) |]
in
self#insert_move_args rarg loc_arg stack_ofs;
self#maybe_emit_spacetime_move ~spacetime_reg;
self#insert_debug (Iop new_op) dbg
(Array.append [|r1.(0)|] loc_arg) loc_res;
self#insert(Iop(Istackoffset(-stack_ofs))) [||] [||];
self#insert Ireturn loc_res [||]
end
| Icall_imm { func; label_after; } ->
let r1 = self#emit_tuple env new_args in
let (loc_arg, stack_ofs) = Proc.loc_arguments r1 in
if stack_ofs = 0 then begin
let call = Iop (Itailcall_imm { func; label_after; }) in
let spacetime_reg =
self#about_to_emit_call env call [| |]
in
self#insert_moves r1 loc_arg;
self#maybe_emit_spacetime_move ~spacetime_reg;
self#insert_debug call dbg loc_arg [||];
end else if func = !current_function_name then begin
let call = Iop (Itailcall_imm { func; label_after; }) in
let loc_arg' = Proc.loc_parameters r1 in
let spacetime_reg =
self#about_to_emit_call env call [| |]
in
self#insert_moves r1 loc_arg';
self#maybe_emit_spacetime_move ~spacetime_reg;
self#insert_debug call dbg loc_arg' [||];
end else begin
let rd = self#regs_for ty in
let loc_res = Proc.loc_results rd in
let spacetime_reg =
self#about_to_emit_call env (Iop new_op) [| |]
in
self#insert_move_args r1 loc_arg stack_ofs;
self#maybe_emit_spacetime_move ~spacetime_reg;
self#insert_debug (Iop new_op) dbg loc_arg loc_res;
self#insert(Iop(Istackoffset(-stack_ofs))) [||] [||];
self#insert Ireturn loc_res [||]
end
| _ -> Misc.fatal_error "Selection.emit_tail"
end
| Csequence(e1, e2) ->
begin match self#emit_expr env e1 with
None -> ()
| Some _ -> self#emit_tail env e2
end
| Cifthenelse(econd, eif, eelse) ->
let (cond, earg) = self#select_condition econd in
begin match self#emit_expr env earg with
None -> ()
| Some rarg ->
self#insert (Iifthenelse(cond, self#emit_tail_sequence env eif,
self#emit_tail_sequence env eelse))
rarg [||]
end
2016-10-12 06:13:05 -07:00
| Cswitch(esel, index, ecases, _dbg) ->
begin match self#emit_expr env esel with
None -> ()
| Some rsel ->
self#insert
(Iswitch(index, Array.map (self#emit_tail_sequence env) ecases))
rsel [||]
end
| Ccatch(_, [], e1) ->
self#emit_tail env e1
| Ccatch(rec_flag, handlers, e1) ->
let handlers =
List.map (fun (nfail, ids, e2) ->
let rs =
List.map
2018-06-30 04:09:11 -07:00
(fun (id, typ) ->
let r = self#regs_for typ in name_regs id r; r)
ids in
(nfail, ids, rs, e2))
handlers in
let env =
List.fold_left (fun env (nfail, _ids, rs, _e2) ->
2016-05-17 06:49:17 -07:00
env_add_static_exception nfail rs env)
env handlers in
let s_body = self#emit_tail_sequence env e1 in
let aux (nfail, ids, rs, e2) =
assert(List.length ids = List.length rs);
let new_env =
List.fold_left
Allow non-val payload types in CMM Ccatch (#1833) Summary ------- This patch adds explicit type annotations for Ccatch payloads in the CMM IR, thus supporting payloads which are not of type `val`. Rationale --------- While CMM generated from OCaml source will always generate payloads of type `val`, this is not the case when targeting CMM to compile from a different language. As a concrete example, I am currently targeting the CMM backend for compilation of WebAssembly, and require `float` payloads. Additionally, @mshinwell has noted that such an extension will be useful for flambda2. As a result, this patch will increase the applicability of the CMM IR as a compilation target. Updates ------- 25/06/2018: Incorporate review comments by @xclerc Design ------ The design of the patch is as follows: 1. Add explicit type annotations to Ccatch handlers. Specifically, ```Ccatch (int * (Ident.t list) * expression)``` becomes ```Ccatch (int * (Ident.t * machtype) list * expression)``` 2. By default, in `cmmgen`, select `typ_val` as the `machtype` 3. Select an appropriate register using the type annotation in `selectgen`, instead of defaulting to `typ_val` 4. Test updates: - Update the CMM parser and pretty-printer to require annotations on Ccatch handlers - Update the existing CMM tests to add the required annotations - Add new tests which require the use of floating-point registers, for which the compiler would generate invalid ASM prior to this patch Since all OCaml code will use `typ_val` as before in `cmmgen` and therefore `selectgen`, compilation for OCaml programs will be identical.
2018-06-28 15:08:50 -07:00
(fun env ((id, _typ),r) -> env_add id r env)
env (List.combine ids rs) in
nfail, self#emit_tail_sequence new_env e2
in
self#insert (Icatch(rec_flag, List.map aux handlers, s_body)) [||] [||]
| Ctrywith(e1, v, e2) ->
let (opt_r1, s1) = self#emit_sequence env e1 in
let rv = self#regs_for typ_val in
let s2 = self#emit_tail_sequence (env_add v rv env) e2 in
self#insert
(Itrywith(s1#extract,
instr_cons (Iop Imove) [|Proc.loc_exn_bucket|] rv s2))
[||] [||];
begin match opt_r1 with
None -> ()
| Some r1 ->
let loc = Proc.loc_results r1 in
self#insert_moves r1 loc;
self#insert Ireturn loc [||]
end
| _ ->
self#emit_return env exp
method private emit_tail_sequence env exp =
let s = {< instr_seq = dummy_instr >} in
s#emit_tail env exp;
s#extract
(* Insertion of the function prologue *)
method insert_prologue _f ~loc_arg ~rarg ~spacetime_node_hole:_ ~env:_ =
self#insert_moves loc_arg rarg;
None
(* Sequentialization of a function definition *)
method initial_env () = env_empty
method emit_fundecl f =
Proc.contains_calls := false;
current_function_name := f.Cmm.fun_name;
let rargs =
List.map
(fun (id, ty) -> let r = self#regs_for ty in name_regs id r; r)
f.Cmm.fun_args in
let rarg = Array.concat rargs in
let loc_arg = Proc.loc_parameters rarg in
(* To make it easier to add the Spacetime instrumentation code, we
first emit the body and extract the resulting instruction sequence;
then we emit the prologue followed by any Spacetime instrumentation. The
sequence resulting from extracting the latter (prologue + instrumentation)
together is then simply prepended to the body. *)
let env =
List.fold_right2
(fun (id, _ty) r env -> env_add id r env)
2016-12-27 04:39:41 -08:00
f.Cmm.fun_args rargs (self#initial_env ()) in
let spacetime_node_hole, env =
if not Config.spacetime then None, env
else begin
let reg = self#regs_for typ_int in
2018-09-26 01:50:42 -07:00
let node_hole = V.create_local "spacetime_node_hole" in
Some (node_hole, reg), env_add (VP.create node_hole) reg env
end
in
self#emit_tail env f.Cmm.fun_body;
let body = self#extract in
instr_seq <- dummy_instr;
let fun_spacetime_shape =
self#insert_prologue f ~loc_arg ~rarg ~spacetime_node_hole ~env
in
let body = self#extract_core ~end_instr:body in
instr_iter (fun instr -> self#mark_instr instr.Mach.desc) body;
{ fun_name = f.Cmm.fun_name;
fun_args = loc_arg;
fun_body = body;
fun_codegen_options = f.Cmm.fun_codegen_options;
fun_dbg = f.Cmm.fun_dbg;
fun_spacetime_shape;
}
end
(* Tail call criterion (estimated). Assumes:
- all arguments are of type "int" (always the case for OCaml function calls)
- one extra argument representing the closure environment (conservative).
*)
let is_tail_call nargs =
assert (Reg.dummy.typ = Int);
let args = Array.make (nargs + 1) Reg.dummy in
let (_loc_arg, stack_ofs) = Proc.loc_arguments args in
stack_ofs = 0
let _ =
Simplif.is_tail_native_heuristic := is_tail_call
let reset () =
current_function_name := ""