ocaml/asmcomp/alpha/emit.mlp

795 lines
28 KiB
Plaintext
Raw Normal View History

(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Emission of Alpha assembly code *)
module LabelSet =
Set.Make(struct type t = Linearize.label let compare = compare end)
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
(* First pass: insert Iloadgp instructions where needed *)
let instr_copy i next =
{ desc = i.desc; next = next; arg = i.arg; res = i.res; live = i.live }
let insert_load_gp f =
let labels_needing_gp = ref LabelSet.empty in
let fixpoint_reached = ref false in
let label_needs_gp lbl =
LabelSet.mem lbl !labels_needing_gp in
let opt_label_needs_gp default = function
None -> default
| Some lbl -> label_needs_gp lbl in
let set_label_needs_gp lbl =
if not (label_needs_gp lbl) then begin
fixpoint_reached := false;
labels_needing_gp := LabelSet.add lbl !labels_needing_gp
end in
let tailrec_entry_point = new_label() in
(* Determine if $gp is needed before an instruction.
[next] says whether $gp is needed just after (i.e. by the following
instruction). *)
let instr_needs_gp next = function
Lend -> false
| Lop(Iconst_int n) -> (* for large n, turned into ldq ($gp) *)
next || Nativeint.cmp n (-0x80000000) < 0
|| Nativeint.cmp n 0x7FFFFFFF > 0
| Lop(Iconst_float s) -> true (* turned into ldq ($gp) *)
| Lop(Iconst_symbol s) -> true (* turned into ldq ($gp) *)
| Lop(Icall_ind) -> false (* does ldgp if needed afterwards *)
| Lop(Icall_imm s) -> false (* does ldgp if needed afterwards *)
| Lop(Itailcall_ind) -> false
| Lop(Itailcall_imm s) ->
if s = f.fun_name then label_needs_gp tailrec_entry_point else false
| Lop(Iextcall(_, _)) -> true (* loads $27 from ($gp) *)
| Lop(Iload(_, Ibased(_, _))) -> true (* loads address from ($gp) *)
| Lop(Istore(_, Ibased(_, _))) -> true (* loads address from ($gp) *)
| Lop(Iintop(Idiv | Imod)) -> true (* divq and remq can be turned into *)
| Lop(Iintop_imm((Idiv | Imod), _)) -> true (* a function call *)
| Lop(Iintop_imm(_, n)) -> (* for large n, turned into ldq ($gp) *)
next || n < -0x80000000 || n > 0x7FFFFFFF
| Lop _ -> next
| Lreloadretaddr -> next
| Lreturn -> false
| Llabel lbl -> if next then set_label_needs_gp lbl; next
| Lbranch lbl -> label_needs_gp lbl
| Lcondbranch(tst, lbl) -> next || label_needs_gp lbl
| Lcondbranch3(lbl1, lbl2, lbl3) ->
opt_label_needs_gp next lbl1 ||
opt_label_needs_gp next lbl2 ||
opt_label_needs_gp next lbl3
| Lswitch lblv ->
let n = ref false in
for i = 0 to Array.length lblv - 1 do
n := !n || label_needs_gp lblv.(i)
done;
!n
| Lsetuptrap lbl -> label_needs_gp lbl
| Lpushtrap -> next
| Lpoptrap -> next
| Lraise -> false in
let rec needs_gp i =
if i.desc = Lend
then false
else instr_needs_gp (needs_gp i.next) i.desc in
while not !fixpoint_reached do
fixpoint_reached := true;
if needs_gp f.fun_body then set_label_needs_gp tailrec_entry_point
done;
(* Insert Ireloadgp instructions after calls where needed *)
let rec insert_reload_gp i =
if i.desc = Lend then (i, false) else begin
let (new_next, needs_next) = insert_reload_gp i.next in
let new_instr =
match i.desc with
(* If the instruction destroys $gp and $gp is needed afterwards,
insert a ldgp after the instructions. *)
Lop(Icall_ind | Icall_imm _) when needs_next ->
instr_copy i
(instr_cons (Lop(Ispecific(Ireloadgp true))) [||] [||] new_next)
| Lop(Iextcall(_, false)) | Lsetuptrap _ when needs_next ->
instr_copy i
(instr_cons (Lop(Ispecific(Ireloadgp false))) [||] [||] new_next)
| _ ->
instr_copy i new_next in
(new_instr, instr_needs_gp needs_next i.desc)
end in
let (new_body, uses_gp) = insert_reload_gp f.fun_body in
({fun_body = new_body; fun_name = f.fun_name; fun_fast = f.fun_fast},
uses_gp)
(* Second pass: code generation proper *)
(* Tradeoff between code size and code speed *)
let fastcode_flag = ref true
(* Output a label *)
let emit_label lbl =
emit_string "$"; emit_int lbl
(* Output a symbol *)
let emit_symbol s =
Emitaux.emit_symbol '$' s
(* Output a pseudo-register *)
let emit_reg r =
match r.loc with
Reg r -> emit_string (register_name r)
| _ -> fatal_error "Emit_alpha.emit_reg"
(* Layout of the stack frame *)
let stack_offset = ref 0
let frame_size () =
let size =
!stack_offset +
8 * (num_stack_slots.(0) + num_stack_slots.(1)) +
(if !contains_calls then 8 else 0) in
Misc.align size 16
let slot_offset loc cl =
match loc with
Incoming n -> frame_size() + n
| Local n ->
if cl = 0
then !stack_offset + n * 8
else !stack_offset + (num_stack_slots.(0) + n) * 8
| Outgoing n -> n
(* Output a stack reference *)
let emit_stack r =
match r.loc with
Stack s ->
let ofs = slot_offset s (register_class r) in `{emit_int ofs}($sp)`
| _ -> fatal_error "Emit_alpha.emit_stack"
(* Output an addressing mode *)
let emit_addressing addr r n =
match addr with
Iindexed ofs ->
`{emit_int ofs}({emit_reg r.(n)})`
| Ibased(s, ofs) ->
`{emit_symbol s}`;
if ofs > 0 then ` + {emit_int ofs}`;
if ofs < 0 then ` - {emit_int(-ofs)}`
(* Immediate operands *)
let is_immediate n = digital_asm || (n >= 0 && n <= 255)
(* Communicate live registers at call points to the assembler *)
let int_reg_number = [|
0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12;
16; 17; 18; 19; 20; 21; 22
|]
let float_reg_number = [|
0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15;
16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 29; 30
|]
let liveregs instr extra_msk =
(* $13, $14, $15 always live *)
let int_mask = ref(0x00070000 lor extra_msk)
and float_mask = ref 0 in
let add_register = function
{loc = Reg r; typ = (Int | Addr)} ->
int_mask := !int_mask lor (1 lsl (31 - int_reg_number.(r)))
| {loc = Reg r; typ = Float} ->
float_mask := !float_mask lor (1 lsl (31 - float_reg_number.(r - 100)))
| _ -> () in
Reg.Set.iter add_register instr.live;
Array.iter add_register instr.arg;
emit_printf " .livereg 0x%08x, 0x%08x\n" !int_mask !float_mask
let live_24 = 1 lsl (31 - 24)
let live_25 = 1 lsl (31 - 25)
let live_26 = 1 lsl (31 - 26)
let live_27 = 1 lsl (31 - 27)
(* Record live pointers at call points *)
type frame_descr =
{ fd_lbl: int; (* Return address *)
fd_frame_size: int; (* Size of stack frame *)
fd_live_offset: int list } (* Offsets/regs of live addresses *)
let frame_descriptors = ref([] : frame_descr list)
let record_frame_label live =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := ((int_reg_number.(r) lsl 1) + 1) :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset } :: !frame_descriptors;
lbl
let record_frame live =
let lbl = record_frame_label live in `{emit_label lbl}:`
let emit_frame fd =
` .quad {emit_label fd.fd_lbl} + 4\n`;
` .word {emit_int fd.fd_frame_size}\n`;
` .word {emit_int (List.length fd.fd_live_offset)}\n`;
List.iter
(fun n ->
` .word {emit_int n}\n`)
fd.fd_live_offset;
` .align 3\n`
(* Work around a bug in gas regarding the parsing of long decimal constants *)
let emit_nativeint =
if digital_asm
then Emitaux.emit_nativeint
else (fun n -> emit_string(Nativeint.to_hexa_string n))
(* Record calls to the GC -- we've moved them out of the way *)
type gc_call =
{ gc_lbl: label; (* Entry label *)
gc_return_lbl: label; (* Where to branch after GC *)
gc_frame: label; (* Label of frame descriptor *)
gc_instr: instruction } (* Record live registers *)
let call_gc_sites = ref ([] : gc_call list)
let emit_call_gc gc =
`{emit_label gc.gc_lbl}:`;
liveregs gc.gc_instr 0;
`{emit_label gc.gc_frame}: bsr $26, caml_call_gc\n`;
(* caml_call_gc preserves $gp *)
` br {emit_label gc.gc_return_lbl}\n`
(* Names of various instructions *)
let name_for_int_operation = function
Iadd -> "addq"
| Isub -> "subq"
| Imul -> "mulq"
| Idiv -> "divq"
| Imod -> "remq"
| Iand -> "and"
| Ior -> "or"
| Ixor -> "xor"
| Ilsl -> "sll"
| Ilsr -> "srl"
| Iasr -> "sra"
| _ -> Misc.fatal_error "Emit.name_for_int_operation"
let name_for_float_operation = function
Inegf -> "fneg"
| Iabsf -> "fabs"
| Iaddf -> "addt"
| Isubf -> "subt"
| Imulf -> "mult"
| Idivf -> "divt"
| _ -> Misc.fatal_error "Emit.name_for_float_operation"
let name_for_specific_operation = function
Iadd4 -> "s4addq"
| Iadd8 -> "s8addq"
| Isub4 -> "s4subq"
| Isub8 -> "s8subq"
| _ -> Misc.fatal_error "Emit.name_for_specific_operation"
let name_for_int_comparison = function
Isigned Ceq -> "cmpeq", true | Isigned Cne -> "cmpeq", false
| Isigned Cle -> "cmple", true | Isigned Cgt -> "cmple", false
| Isigned Clt -> "cmplt", true | Isigned Cge -> "cmplt", false
| Iunsigned Ceq -> "cmpeq", true | Iunsigned Cne -> "cmpeq", false
| Iunsigned Cle -> "cmpule", true | Iunsigned Cgt -> "cmpule", false
| Iunsigned Clt -> "cmpult", true | Iunsigned Cge -> "cmpult", false
(* Used for comparisons against 0 *)
let name_for_int_cond_branch = function
Isigned Ceq -> "beq" | Isigned Cne -> "bne"
| Isigned Cle -> "ble" | Isigned Cgt -> "bgt"
| Isigned Clt -> "blt" | Isigned Cge -> "bge"
| Iunsigned Ceq -> "beq" | Iunsigned Cne -> "bne"
| Iunsigned Cle -> "beq" | Iunsigned Cgt -> "bne"
| Iunsigned Clt -> "#" | Iunsigned Cge -> "br"
(* Always false *) (* Always true *)
let name_for_float_comparison cmp neg =
match cmp with
Ceq -> ("cmpteq", false, neg) | Cne -> ("cmpteq", false, not neg)
| Cle -> ("cmptle", false, neg) | Cgt -> ("cmptlt", true, neg)
| Clt -> ("cmptlt", false, neg) | Cge -> ("cmptle", true, neg)
(* Output the assembly code for an instruction *)
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Label of trap for out-of-range accesses *)
let range_check_trap = ref 0
(* List of floating-point literals (fon non-Digital assemblers) *)
let float_constants = ref ([] : (label * string) list)
let emit_instr i =
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc <> dst.loc then begin
match (src.loc, dst.loc) with
(Reg rs, Reg rd) ->
if src.typ = Float then
` fmov {emit_reg src}, {emit_reg dst}\n`
else
` mov {emit_reg src}, {emit_reg dst}\n`
| (Reg rs, Stack sd) ->
if src.typ = Float then
` stt {emit_reg src}, {emit_stack dst}\n`
else
` stq {emit_reg src}, {emit_stack dst}\n`
| (Stack ss, Reg rd) ->
if src.typ = Float then
` ldt {emit_reg dst}, {emit_stack src}\n`
else
` ldq {emit_reg dst}, {emit_stack src}\n`
| _ ->
fatal_error "Emit_alpha: Imove"
end
| Lop(Iconst_int n) ->
if Nativeint.sign n = 0 then
` clr {emit_reg i.res.(0)}\n`
else
` ldiq {emit_reg i.res.(0)}, {emit_nativeint n}\n`
| Lop(Iconst_float s) ->
if digital_asm then
` ldit {emit_reg i.res.(0)}, {emit_string s}\n`
else if float_of_string s = 0.0 then
` fmov $f31, {emit_reg i.res.(0)}\n`
else begin
let lbl = new_label() in
float_constants := (lbl, s) :: !float_constants;
` lda $25, {emit_label lbl}\n`;
` ldt {emit_reg i.res.(0)}, 0($25)\n`
end
| Lop(Iconst_symbol s) ->
` lda {emit_reg i.res.(0)}, {emit_symbol s}\n`
| Lop(Icall_ind) ->
liveregs i 0;
`{record_frame i.live} jsr ({emit_reg i.arg.(0)})\n`
| Lop(Icall_imm s) ->
liveregs i 0;
`{record_frame i.live} bsr $26, {emit_symbol s}\n`
| Lop(Itailcall_ind) ->
let n = frame_size() in
if !contains_calls then
` ldq $26, {emit_int(n - 8)}($sp)\n`;
if n > 0 then
` lda $sp, {emit_int n}($sp)\n`;
liveregs i live_26;
` jmp ({emit_reg i.arg.(0)})\n`
| Lop(Itailcall_imm s) ->
if s = !function_name then begin
` br {emit_label !tailrec_entry_point}\n`
end else begin
let n = frame_size() in
if !contains_calls then
` ldq $26, {emit_int(n - 8)}($sp)\n`;
if n > 0 then
` lda $sp, {emit_int n}($sp)\n`;
liveregs i live_26;
` br {emit_symbol s}\n`
end
| Lop(Iextcall(s, alloc)) ->
if alloc then begin
` lda $27, {emit_symbol s}\n`;
liveregs i live_27;
`{record_frame i.live} bsr $26, caml_c_call\n`
end else begin
` jsr {emit_symbol s}\n`
end
| Lop(Istackoffset n) ->
` lda $sp, {emit_int (-n)}($sp)\n`;
stack_offset := !stack_offset + n
| Lop(Iload(chunk, addr)) ->
let load_instr =
match chunk with
Word -> if i.res.(0).typ = Float then "ldt" else "ldq"
| Byte_unsigned -> "ldbu"
| Byte_signed -> "ldb"
| Sixteen_unsigned -> "ldwu"
| Sixteen_signed -> "ldw" in
` {emit_string load_instr} {emit_reg i.res.(0)}, {emit_addressing addr i.arg 0}\n`
| Lop(Istore(chunk, addr)) ->
let store_instr =
match chunk with
Word -> if i.arg.(0).typ = Float then "stt" else "stq"
| Byte_unsigned | Byte_signed -> "stb"
| Sixteen_unsigned | Sixteen_signed -> "stw" in
` {emit_string store_instr} {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 1}\n`
| Lop(Ialloc n) ->
if !fastcode_flag then begin
let lbl_redo = new_label() in
let lbl_call_gc = new_label() in
let lbl_frame = record_frame_label i.live in
call_gc_sites :=
{ gc_lbl = lbl_call_gc;
gc_return_lbl = lbl_redo;
gc_frame = lbl_frame;
gc_instr = i } :: !call_gc_sites;
`{emit_label lbl_redo}: lda $13, -{emit_int n}($13)\n`;
` cmpult $13, $14, $25\n`;
` bne $25, {emit_label lbl_call_gc}\n`;
` addq $13, 8, {emit_reg i.res.(0)}\n`
end else begin
begin match n with
16 -> liveregs i 0;
`{record_frame i.live} bsr $26, caml_alloc1\n`
| 24 -> liveregs i 0;
`{record_frame i.live} bsr $26, caml_alloc2\n`
| 32 -> liveregs i 0;
`{record_frame i.live} bsr $26, caml_alloc3\n`
| _ -> ` ldiq $25, {emit_int n}\n`;
liveregs i live_25;
`{record_frame i.live} bsr $26, caml_alloc\n`
end;
(* $gp preserved by caml_alloc* *)
` addq $13, 8, {emit_reg i.res.(0)}\n`
end
| Lop(Iintop(Icomp cmp)) ->
let (comp, test) = name_for_int_comparison cmp in
` {emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`;
if not test then
` xor {emit_reg i.res.(0)}, 1, {emit_reg i.res.(0)}\n`
| Lop(Iintop(Icheckbound)) ->
if !range_check_trap = 0 then range_check_trap := new_label();
` cmpule {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, $25\n`;
` bne $25, {emit_label !range_check_trap}\n`
| Lop(Iintop op) ->
let instr = name_for_int_operation op in
` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Idiv, n)) when n = 1 lsl (Misc.log2 n) ->
let l = Misc.log2 n in
if is_immediate n then
` addq {emit_reg i.arg.(0)}, {emit_int(n-1)}, $25\n`
else begin
` ldiq $25, {emit_int(n-1)}\n`;
` addq {emit_reg i.arg.(0)}, $25, $25\n`
end;
` cmovge {emit_reg i.arg.(0)}, {emit_reg i.arg.(0)}, $25\n`;
` sra $25, {emit_int l}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Imod, n)) when n = 1 lsl (Misc.log2 n) ->
let l = Misc.log2 n in
if is_immediate n then
` and {emit_reg i.arg.(0)}, {emit_int(n-1)}, $25\n`
else begin
` ldiq $25, {emit_int (n-1)}\n`;
` and {emit_reg i.arg.(0)}, $25, $25\n`
end;
` subq $25, {emit_int n}, $24\n`;
` cmovge {emit_reg i.arg.(0)}, $25, $24\n`;
` cmoveq $25, $25, $24\n`;
` mov $24, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Icomp cmp, n)) ->
let (comp, test) = name_for_int_comparison cmp in
` {emit_string comp} {emit_reg i.arg.(0)}, {emit_int n}, {emit_reg i.res.(0)}\n`;
if not test then
` xor {emit_reg i.res.(0)}, 1, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Icheckbound, n)) ->
if !range_check_trap = 0 then range_check_trap := new_label();
` cmpule {emit_reg i.arg.(0)}, {emit_int n}, $25\n`;
` bne $25, {emit_label !range_check_trap}\n`
| Lop(Iintop_imm(op, n)) ->
let instr = name_for_int_operation op in
` {emit_string instr} {emit_reg i.arg.(0)}, {emit_int n}, {emit_reg i.res.(0)}\n`
| Lop(Inegf | Iabsf as op) ->
let instr = name_for_float_operation op in
` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iaddf | Isubf | Imulf | Idivf as op) ->
let instr = name_for_float_operation op in
` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lop(Ifloatofint) ->
` .set noat\n`;
` lda $sp, -8($sp)\n`;
` stq {emit_reg i.arg.(0)}, 0($sp)\n`;
` ldt $f28, 0($sp)\n`;
` cvtqt $f28, {emit_reg i.res.(0)}\n`;
` lda $sp, 8($sp)\n`;
` .set at\n`
| Lop(Iintoffloat) ->
` .set noat\n`;
` lda $sp, -8($sp)\n`;
` cvttqc {emit_reg i.arg.(0)}, $f28\n`;
` stt $f28, 0($sp)\n`;
` ldq {emit_reg i.res.(0)}, 0($sp)\n`;
` lda $sp, 8($sp)\n`;
` .set at\n`
| Lop(Ispecific(Ireloadgp marked_r26)) ->
if marked_r26 then begin
` bic $26, 1, $26\n`;
` ldgp $gp, 4($26)\n`
end else begin
` ldgp $gp, 0($26)\n`
end
| Lop(Ispecific sop) ->
let instr = name_for_specific_operation sop in
` {emit_string instr} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.res.(0)}\n`
| Lreloadretaddr ->
let n = frame_size() in
` ldq $26, {emit_int(n - 8)}($sp)\n`
| Lreturn ->
let n = frame_size() in
if n > 0 then
` lda $sp, {emit_int n}($sp)\n`;
liveregs i live_26;
` ret ($26)\n`
| Llabel lbl ->
`{emit_label lbl}:\n`
| Lbranch lbl ->
` br {emit_label lbl}\n`
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
` bne {emit_reg i.arg.(0)}, {emit_label lbl}\n`
| Ifalsetest ->
` beq {emit_reg i.arg.(0)}, {emit_label lbl}\n`
| Iinttest cmp ->
let (comp, test) = name_for_int_comparison cmp in
` {emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, $25\n`;
if test then
` bne $25, {emit_label lbl}\n`
else
` beq $25, {emit_label lbl}\n`
| Iinttest_imm(cmp, 0) ->
let branch = name_for_int_cond_branch cmp in
` {emit_string branch} {emit_reg i.arg.(0)}, {emit_label lbl}\n`
| Iinttest_imm(cmp, n) ->
let (comp, test) = name_for_int_comparison cmp in
` {emit_string comp} {emit_reg i.arg.(0)}, {emit_int n}, $25\n`;
if test then
` bne $25, {emit_label lbl}\n`
else
` beq $25, {emit_label lbl}\n`
| Ifloattest(cmp, neg) ->
` .set noat\n`;
let (comp, swap, test) = name_for_float_comparison cmp neg in
` {emit_string comp} `;
if swap
then `{emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}, $f28\n`
else `{emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, $f28\n`;
if test
then ` fbeq $f28, {emit_label lbl}\n`
else ` fbne $f28, {emit_label lbl}\n`;
` .set at\n`
| Ioddtest ->
` blbs {emit_reg i.arg.(0)}, {emit_label lbl}\n`
| Ieventest ->
` blbc {emit_reg i.arg.(0)}, {emit_label lbl}\n`
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
begin match lbl0 with
None -> ()
| Some lbl -> ` beq {emit_reg i.arg.(0)}, {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` blbs {emit_reg i.arg.(0)}, {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl ->
if lbl0 <> None then
` blbc {emit_reg i.arg.(0)}, {emit_label lbl}\n`
else if lbl1 <> None then
` bne {emit_reg i.arg.(0)}, {emit_label lbl}\n`
else begin
` subq {emit_reg i.arg.(0)}, 2, $25\n`;
` beq $25, {emit_label lbl}\n`
end
end
| Lswitch jumptbl ->
let lbl_jump = new_label() in
` br $25, {emit_label lbl_jump}\n`;
for i = 0 to Array.length jumptbl - 1 do
` br {emit_label jumptbl.(i)}\n`
done;
`{emit_label lbl_jump}: s4addq {emit_reg i.arg.(0)}, $25, $25\n`;
` jmp ($25), {emit_label jumptbl.(0)}\n`
| Lsetuptrap lbl ->
` br $25, {emit_label lbl}\n`
| Lpushtrap ->
stack_offset := !stack_offset + 16;
` lda $sp, -16($sp)\n`;
` stq $15, 0($sp)\n`;
` stq $25, 8($sp)\n`;
` mov $sp, $15\n`
| Lpoptrap ->
` ldq $15, 0($sp)\n`;
` lda $sp, 16($sp)\n`;
stack_offset := !stack_offset - 16
| Lraise ->
` ldq $26, 8($15)\n`;
` mov $15, $sp\n`;
` ldq $15, 0($sp)\n`;
` lda $sp, 16($sp)\n`;
liveregs i live_26;
` jmp $25, ($26)\n` (* Keep retaddr in $25 for debugging *)
let rec emit_all i =
match i.desc with Lend -> () | _ -> emit_instr i; emit_all i.next
(* Emission of a function declaration *)
let emit_fundecl (fundecl, needs_gp) =
function_name := fundecl.fun_name;
fastcode_flag := fundecl.fun_fast;
stack_offset := 0;
call_gc_sites := [];
range_check_trap := 0;
float_constants := [];
` .text\n`;
` .align 4\n`;
` .globl {emit_symbol fundecl.fun_name}\n`;
` .ent {emit_symbol fundecl.fun_name}\n`;
`{emit_symbol fundecl.fun_name}:\n`;
let n = frame_size() in
if n > 0 then
` lda $sp, -{emit_int n}($sp)\n`;
if needs_gp then begin
let lbl = new_label() in
` br $27, {emit_label lbl}\n`;
`{emit_label lbl}: ldgp $gp, 0($27)\n`
end;
if !contains_calls then begin
` stq $26, {emit_int(n - 8)}($sp)\n`;
` .mask 0x04000000, -8\n`;
` .fmask 0x0, 0\n`
end;
` .frame $sp, {emit_int n}, $26\n`;
` .prologue 0\n`;
tailrec_entry_point := new_label();
`{emit_label !tailrec_entry_point}:\n`;
emit_all fundecl.fun_body;
List.iter emit_call_gc !call_gc_sites;
if !range_check_trap > 0 then begin
`{emit_label !range_check_trap}:\n`;
` br $25, call_array_bound_error\n`
(* Keep retaddr in $25 for debugging *)
end;
` .end {emit_symbol fundecl.fun_name}\n`;
if !float_constants <> [] then begin
` .section .rodata\n`;
` .align 3\n`;
List.iter
(fun (lbl, s) -> `{emit_label lbl}: .t_floating {emit_string s}\n`)
!float_constants
end
let fundecl f =
emit_fundecl (insert_load_gp f)
(* Emission of data *)
let emit_item = function
Cdefine_symbol s ->
` .globl {emit_symbol s}\n`;
`{emit_symbol s}:\n`
| Cdefine_label lbl ->
`{emit_label (100000 + lbl)}:\n`
| Cint8 n ->
` .byte {emit_int n}\n`
| Cint16 n ->
` .word {emit_int n}\n`
| Cint n ->
` .quad {emit_nativeint n}\n`
| Cfloat f ->
` .double {emit_string f}\n`
| Csymbol_address s ->
` .quad {emit_symbol s}\n`
| Clabel_address lbl ->
` .quad {emit_label (100000 + lbl)}\n`
| Cstring s ->
emit_string_directive " .ascii " s
| Cskip n ->
if n > 0 then ` .space {emit_int n}\n`
| Calign n ->
` .align {emit_int(Misc.log2 n)}\n`
let data l =
` .data\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
(* There are really two groups of registers:
$sp and $15 always point to stack locations
$0 - $14, $16-$23 never point to stack locations. *)
` .noalias $0,$sp; .noalias $0,$15; .noalias $1,$sp; .noalias $1,$15\n`;
` .noalias $2,$sp; .noalias $2,$15; .noalias $3,$sp; .noalias $3,$15\n`;
` .noalias $4,$sp; .noalias $4,$15; .noalias $5,$sp; .noalias $5,$15\n`;
` .noalias $6,$sp; .noalias $6,$15; .noalias $7,$sp; .noalias $7,$15\n`;
` .noalias $8,$sp; .noalias $8,$15; .noalias $9,$sp; .noalias $9,$15\n`;
` .noalias $10,$sp; .noalias $10,$15; .noalias $11,$sp; .noalias $11,$15\n`;
` .noalias $12,$sp; .noalias $12,$15; .noalias $13,$sp; .noalias $13,$15\n`;
` .noalias $14,$sp; .noalias $14,$15; .noalias $16,$sp; .noalias $16,$15\n`;
` .noalias $17,$sp; .noalias $17,$15; .noalias $18,$sp; .noalias $18,$15\n`;
` .noalias $19,$sp; .noalias $19,$15; .noalias $20,$sp; .noalias $20,$15\n`;
` .noalias $21,$sp; .noalias $21,$15; .noalias $22,$sp; .noalias $22,$15\n`;
` .noalias $23,$sp; .noalias $23,$15\n\n`;
(* The following .file directive is intended to prevent the generation
of line numbers for the debugger, 'cos they make .o files larger
and slow down linking. *)
` .file 1 \"{emit_string !Location.input_name}\"\n\n`;
let lbl_begin = Compilenv.current_unit_name() ^ "_data_begin" in
` .data\n`;
` .globl {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin}:\n`;
let lbl_begin = Compilenv.current_unit_name() ^ "_code_begin" in
` .text\n`;
` .globl {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin}:\n`
let end_assembly () =
let lbl_end = Compilenv.current_unit_name() ^ "_code_end" in
` .text\n`;
` .globl {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end}:\n`;
let lbl_end = Compilenv.current_unit_name() ^ "_data_end" in
` .data\n`;
` .globl {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end}:\n`;
` .quad 0\n`;
let lbl_frame = Compilenv.current_unit_name() ^ "_frametable" in
begin match Config.system with
"digital" -> ` .rdata\n`
| "linux" -> ` .section .rodata\n`
| _ -> assert false
end;
` .globl {emit_symbol lbl_frame}\n`;
`{emit_symbol lbl_frame}:\n`;
` .quad {emit_int (List.length !frame_descriptors)}\n`;
List.iter emit_frame !frame_descriptors;
frame_descriptors := []