ocaml/runtime/alloc.c

278 lines
8.2 KiB
C
Raw Permalink Normal View History

/**************************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy and Damien Doligez, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
/* 1. Allocation functions doing the same work as the macros in the
case where [Setup_for_gc] and [Restore_after_gc] are no-ops.
2. Convenience functions related to allocation.
*/
#include <string.h>
#include "caml/alloc.h"
#include "caml/custom.h"
#include "caml/major_gc.h"
#include "caml/memory.h"
#include "caml/mlvalues.h"
#include "caml/stacks.h"
#include "caml/signals.h"
#define Setup_for_gc
#define Restore_after_gc
CAMLexport value caml_alloc (mlsize_t wosize, tag_t tag)
{
value result;
mlsize_t i;
CAMLassert (tag < 256);
CAMLassert (tag != Infix_tag);
if (wosize <= Max_young_wosize){
if (wosize == 0){
result = Atom (tag);
}else{
Alloc_small (result, wosize, tag);
if (tag < No_scan_tag){
for (i = 0; i < wosize; i++) Field (result, i) = Val_unit;
}
}
}else{
result = caml_alloc_shr (wosize, tag);
if (tag < No_scan_tag){
for (i = 0; i < wosize; i++) Field (result, i) = Val_unit;
}
result = caml_check_urgent_gc (result);
}
return result;
}
CAMLexport value caml_alloc_small (mlsize_t wosize, tag_t tag)
{
value result;
CAMLassert (wosize > 0);
CAMLassert (wosize <= Max_young_wosize);
CAMLassert (tag < 256);
Alloc_small (result, wosize, tag);
return result;
}
/* [n] is a number of words (fields) */
CAMLexport value caml_alloc_tuple(mlsize_t n)
{
return caml_alloc(n, 0);
}
/* [len] is a number of bytes (chars) */
CAMLexport value caml_alloc_string (mlsize_t len)
{
value result;
mlsize_t offset_index;
mlsize_t wosize = (len + sizeof (value)) / sizeof (value);
if (wosize <= Max_young_wosize) {
Alloc_small (result, wosize, String_tag);
}else{
result = caml_alloc_shr (wosize, String_tag);
result = caml_check_urgent_gc (result);
}
Field (result, wosize - 1) = 0;
offset_index = Bsize_wsize (wosize) - 1;
Byte (result, offset_index) = offset_index - len;
return result;
}
/* [len] is a number of bytes (chars) */
CAMLexport value caml_alloc_initialized_string (mlsize_t len, const char *p)
{
value result = caml_alloc_string (len);
memcpy((char *)String_val(result), p, len);
return result;
}
/* [len] is a number of words.
[mem] and [max] are relative (without unit).
*/
CAMLexport value caml_alloc_final (mlsize_t len, final_fun fun,
mlsize_t mem, mlsize_t max)
{
return caml_alloc_custom(caml_final_custom_operations(fun),
len * sizeof(value), mem, max);
}
CAMLexport value caml_copy_string(char const *s)
{
Cleaning up the C code (#1812) Running Clang 6.0 and GCC 8 with full warnings on suggests a few simple improvements and clean-ups to the C code of OCaml. This commit implements them. * Remove old-style, unprototyped function declarations It's `int f(void)`, not `int f()`. [-Wstrict-prototypes] * Be more explicit about conversions involving `float` and `double` byterun/bigarray.c, byterun/ints.c: add explicit casts to clarify the intent renamed float field of conversion union from `d` to `f`. byterun/compact.c, byterun/gc_ctrl.c: some local variables were of type `float` while all FP computations here are done in double precision; turned these variables into `double`. [-Wdouble-promotion -Wfloat-conversion] *Add explicit initialization of struct field `compare_ext` [-Wmissing-field-initializers] * Declare more functions "noreturn" [-Wmissing-noreturn] * Make CAMLassert compliant with ISO C In `e1 ? e2 : e3`, expressions `e2` and `e3` must have the same type. `e2` of type `void` and `e3` of type `int`, as in the original code, is a GNU extension. * Remove or conditionalize unused macros Some macros were defined and never used. Some other macros were always defined but conditionally used. [-Wunused-macros] * Replace some uses of `int` by more appropriate types like `intnat` On a 64-bit platform, `int` is only 32 bits and may not represent correctly the length of a string or the size of an OCaml heap block. This commit replaces a number of uses of `int` by other types that are 64-bit wide on 64-bit architectures, such as `intnat` or `uintnat` or `size_t` or `mlsize_t`. Sometimes an `intnat` was used as an `int` and is intended as a Boolean (0 or 1); then it was replaced by an `int`. There are many remaining cases where we assign a 64-bit quantity to a 32-bit `int` variable. Either I believe these cases are safe (e.g. the 64-bit quantity is the difference between two pointers within an I/O buffer, something that always fits in 32 bits), or the code change was not obvious and too risky. [-Wshorten-64-to-32] * Put `inline` before return type `static inline void f(void)` is cleaner than `static void inline f(void)`. [-Wold-style-declaration] * Unused assignment to unused parameter Looks very useless. [-Wunused-but-set-parameter]
2018-06-07 03:55:09 -07:00
mlsize_t len;
value res;
len = strlen(s);
res = caml_alloc_initialized_string(len, s);
return res;
}
CAMLexport value caml_alloc_array(value (*funct)(char const *),
char const ** arr)
{
CAMLparam0 ();
mlsize_t nbr, n;
CAMLlocal2 (v, result);
nbr = 0;
while (arr[nbr] != 0) nbr++;
result = caml_alloc (nbr, 0);
for (n = 0; n < nbr; n++) {
/* The two statements below must be separate because of evaluation
order (don't take the address &Field(result, n) before
calling funct, which may cause a GC and move result). */
v = funct(arr[n]);
caml_modify(&Field(result, n), v);
}
CAMLreturn (result);
}
/* [len] is a number of floats */
value caml_alloc_float_array(mlsize_t len)
{
#ifdef FLAT_FLOAT_ARRAY
mlsize_t wosize = len * Double_wosize;
value result;
/* For consistency with [caml_make_vect], which can't tell whether it should
create a float array or not when the size is zero, the tag is set to
zero when the size is zero. */
if (wosize <= Max_young_wosize){
if (wosize == 0)
return Atom(0);
else
Alloc_small (result, wosize, Double_array_tag);
}else {
result = caml_alloc_shr (wosize, Double_array_tag);
result = caml_check_urgent_gc (result);
}
return result;
#else
return caml_alloc (len, 0);
#endif
}
CAMLexport value caml_copy_string_array(char const ** arr)
{
return caml_alloc_array(caml_copy_string, arr);
}
CAMLexport int caml_convert_flag_list(value list, int *flags)
{
int res;
res = 0;
while (list != Val_int(0)) {
res |= flags[Int_val(Field(list, 0))];
list = Field(list, 1);
}
return res;
}
/* For compiling let rec over values */
/* [size] is a [value] representing number of words (fields) */
CAMLprim value caml_alloc_dummy(value size)
{
mlsize_t wosize = Long_val(size);
return caml_alloc (wosize, 0);
}
/* [size] is a [value] representing number of words (fields) */
CAMLprim value caml_alloc_dummy_function(value size,value arity)
{
/* the arity argument is used by the js_of_ocaml runtime */
return caml_alloc_dummy(size);
}
/* [size] is a [value] representing number of floats. */
CAMLprim value caml_alloc_dummy_float (value size)
{
mlsize_t wosize = Long_val(size) * Double_wosize;
return caml_alloc (wosize, 0);
}
CAMLprim value caml_alloc_dummy_infix(value vsize, value voffset)
{
mlsize_t wosize = Long_val(vsize), offset = Long_val(voffset);
value v = caml_alloc(wosize, Closure_tag);
/* The following choice of closure info causes the GC to skip
the whole block contents. This is correct since the dummy
block contains no pointers into the heap. However, the block
cannot be marshaled or hashed, because not all closinfo fields
and infix header fields are correctly initialized. */
Closinfo_val(v) = Make_closinfo(0, wosize);
if (offset > 0) {
v += Bsize_wsize(offset);
Hd_val(v) = Make_header(offset, Infix_tag, Caml_white);
}
return v;
}
CAMLprim value caml_update_dummy(value dummy, value newval)
{
mlsize_t size, i;
tag_t tag;
tag = Tag_val (newval);
if (tag == Double_array_tag){
CAMLassert (Wosize_val(newval) == Wosize_val(dummy));
2019-06-05 01:31:05 -07:00
CAMLassert (Tag_val(dummy) != Infix_tag);
Tag_val(dummy) = Double_array_tag;
size = Wosize_val (newval) / Double_wosize;
for (i = 0; i < size; i++) {
Store_double_flat_field (dummy, i, Double_flat_field (newval, i));
}
} else if (tag == Infix_tag) {
value clos = newval - Infix_offset_hd(Hd_val(newval));
CAMLassert (Tag_val(clos) == Closure_tag);
CAMLassert (Tag_val(dummy) == Infix_tag);
CAMLassert (Infix_offset_val(dummy) == Infix_offset_val(newval));
dummy = dummy - Infix_offset_val(dummy);
size = Wosize_val(clos);
CAMLassert (size == Wosize_val(dummy));
/* It is safe to use [caml_modify] to copy code pointers
from [clos] to [dummy], because the value being overwritten is
an integer, and the new "value" is a pointer outside the minor
heap. */
for (i = 0; i < size; i++) {
caml_modify (&Field(dummy, i), Field(clos, i));
}
} else {
2019-06-04 03:42:49 -07:00
CAMLassert (tag < No_scan_tag);
2019-06-05 01:31:05 -07:00
CAMLassert (Tag_val(dummy) != Infix_tag);
Tag_val(dummy) = tag;
size = Wosize_val(newval);
CAMLassert (size == Wosize_val(dummy));
/* See comment above why this is safe even if [tag == Closure_tag]
and some of the "values" being copied are actually code pointers. */
for (i = 0; i < size; i++){
caml_modify (&Field(dummy, i), Field(newval, i));
}
}
return Val_unit;
}
CAMLexport value caml_alloc_some(value v)
{
CAMLparam1(v);
value some = caml_alloc_small(1, 0);
Field(some, 0) = v;
CAMLreturn(some);
}