253 lines
7.7 KiB
C++
253 lines
7.7 KiB
C++
// Copyright (C) 2002-2007 Nikolaus Gebhardt
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#ifndef __IRR_POINT_2D_H_INCLUDED__
|
|
#define __IRR_POINT_2D_H_INCLUDED__
|
|
|
|
#include "irrMath.h"
|
|
|
|
namespace irr
|
|
{
|
|
namespace core
|
|
{
|
|
|
|
|
|
//! 2d vector template class with lots of operators and methods.
|
|
template <class T>
|
|
class vector2d
|
|
{
|
|
public:
|
|
|
|
vector2d() : X(0), Y(0) {}
|
|
vector2d(T nx, T ny) : X(nx), Y(ny) {}
|
|
vector2d(const vector2d<T>& other) : X(other.X), Y(other.Y) {}
|
|
|
|
// operators
|
|
|
|
vector2d<T> operator-() const { return vector2d<T>(-X, -Y); }
|
|
|
|
vector2d<T>& operator=(const vector2d<T>& other) { X = other.X; Y = other.Y; return *this; }
|
|
|
|
vector2d<T> operator+(const vector2d<T>& other) const { return vector2d<T>(X + other.X, Y + other.Y); }
|
|
vector2d<T>& operator+=(const vector2d<T>& other) { X+=other.X; Y+=other.Y; return *this; }
|
|
|
|
vector2d<T> operator-(const vector2d<T>& other) const { return vector2d<T>(X - other.X, Y - other.Y); }
|
|
vector2d<T>& operator-=(const vector2d<T>& other) { X-=other.X; Y-=other.Y; return *this; }
|
|
|
|
vector2d<T> operator*(const vector2d<T>& other) const { return vector2d<T>(X * other.X, Y * other.Y); }
|
|
vector2d<T>& operator*=(const vector2d<T>& other) { X*=other.X; Y*=other.Y; return *this; }
|
|
vector2d<T> operator*(const T v) const { return vector2d<T>(X * v, Y * v); }
|
|
vector2d<T>& operator*=(const T v) { X*=v; Y*=v; return *this; }
|
|
|
|
vector2d<T> operator/(const vector2d<T>& other) const { return vector2d<T>(X / other.X, Y / other.Y); }
|
|
vector2d<T>& operator/=(const vector2d<T>& other) { X/=other.X; Y/=other.Y; return *this; }
|
|
vector2d<T> operator/(const T v) const { return vector2d<T>(X / v, Y / v); }
|
|
vector2d<T>& operator/=(const T v) { X/=v; Y/=v; return *this; }
|
|
|
|
bool operator<=(const vector2d<T>&other) const { return X<=other.X && Y<=other.Y; }
|
|
bool operator>=(const vector2d<T>&other) const { return X>=other.X && Y>=other.Y; }
|
|
|
|
bool operator<(const vector2d<T>&other) const { return X<other.X && Y<other.Y; }
|
|
bool operator>(const vector2d<T>&other) const { return X>other.X && Y>other.Y; }
|
|
|
|
bool operator==(const vector2d<T>& other) const { return other.X==X && other.Y==Y; }
|
|
bool operator!=(const vector2d<T>& other) const { return other.X!=X || other.Y!=Y; }
|
|
|
|
// functions
|
|
|
|
//! returns if this vector equals the other one, taking floating point rounding errors into account
|
|
bool equals(const vector2d<T>& other) const
|
|
{
|
|
return core::equals(X, other.X) && core::equals(Y, other.Y);
|
|
}
|
|
|
|
void set(T nx, T ny) {X=nx; Y=ny; }
|
|
void set(const vector2d<T>& p) { X=p.X; Y=p.Y;}
|
|
|
|
//! Returns the length of the vector
|
|
//! \return Returns the length of the vector.
|
|
T getLength() const { return (T)sqrt(X*X + Y*Y); }
|
|
|
|
//! Returns the squared length of this vector
|
|
/** This is useful because it is much faster than getLength(). */
|
|
T getLengthSQ() const { return X*X + Y*Y; }
|
|
|
|
//! Returns the dot product of this vector with another.
|
|
T dotProduct(const vector2d<T>& other) const
|
|
{
|
|
return X*other.X + Y*other.Y;
|
|
}
|
|
|
|
//! Returns distance from another point. Here, the vector is interpreted
|
|
//! as a point in 2 dimensional space.
|
|
T getDistanceFrom(const vector2d<T>& other) const
|
|
{
|
|
return vector2d<T>(X - other.X, Y - other.Y).getLength();
|
|
}
|
|
|
|
//! Returns squared distance from another point. Here, the vector is
|
|
//! interpreted as a point in 2 dimensional space.
|
|
T getDistanceFromSQ(const vector2d<T>& other) const
|
|
{
|
|
return vector2d<T>(X - other.X, Y - other.Y).getLengthSQ();
|
|
}
|
|
|
|
//! rotates the point around a center by an amount of degrees.
|
|
void rotateBy(f64 degrees, const vector2d<T>& center)
|
|
{
|
|
degrees *= DEGTORAD64;
|
|
T cs = (T)cos(degrees);
|
|
T sn = (T)sin(degrees);
|
|
|
|
X -= center.X;
|
|
Y -= center.Y;
|
|
|
|
set(X*cs - Y*sn, X*sn + Y*cs);
|
|
|
|
X += center.X;
|
|
Y += center.Y;
|
|
}
|
|
|
|
//! normalizes the vector.
|
|
vector2d<T>& normalize()
|
|
{
|
|
T l = X*X + Y*Y;
|
|
if (l == 0)
|
|
return *this;
|
|
l = core::reciprocal_squareroot ( (f32)l );
|
|
X *= l;
|
|
Y *= l;
|
|
return *this;
|
|
}
|
|
|
|
//! Calculates the angle of this vector in grad in the trigonometric sense.
|
|
//! This method has been suggested by Pr3t3nd3r.
|
|
//! \return Returns a value between 0 and 360.
|
|
f64 getAngleTrig() const
|
|
{
|
|
if (X == 0)
|
|
return Y < 0 ? 270 : 90;
|
|
else
|
|
if (Y == 0)
|
|
return X < 0 ? 180 : 0;
|
|
|
|
if ( Y > 0)
|
|
if (X > 0)
|
|
return atan(Y/X) * RADTODEG64;
|
|
else
|
|
return 180.0-atan(Y/-X) * RADTODEG64;
|
|
else
|
|
if (X > 0)
|
|
return 360.0-atan(-Y/X) * RADTODEG64;
|
|
else
|
|
return 180.0+atan(-Y/-X) * RADTODEG64;
|
|
}
|
|
|
|
//! Calculates the angle of this vector in grad in the counter trigonometric sense.
|
|
//! \return Returns a value between 0 and 360.
|
|
inline f64 getAngle() const
|
|
{
|
|
if (Y == 0) // corrected thanks to a suggestion by Jox
|
|
return X < 0 ? 180 : 0;
|
|
else if (X == 0)
|
|
return Y < 0 ? 90 : 270;
|
|
|
|
f64 tmp = Y / getLength();
|
|
tmp = atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64;
|
|
|
|
if (X>0 && Y>0)
|
|
return tmp + 270;
|
|
else
|
|
if (X>0 && Y<0)
|
|
return tmp + 90;
|
|
else
|
|
if (X<0 && Y<0)
|
|
return 90 - tmp;
|
|
else
|
|
if (X<0 && Y>0)
|
|
return 270 - tmp;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
//! Calculates the angle between this vector and another one in grad.
|
|
//! \return Returns a value between 0 and 90.
|
|
inline f64 getAngleWith(const vector2d<T>& b) const
|
|
{
|
|
f64 tmp = X*b.X + Y*b.Y;
|
|
|
|
if (tmp == 0.0)
|
|
return 90.0;
|
|
|
|
tmp = tmp / sqrt((X*X + Y*Y) * (b.X*b.X + b.Y*b.Y));
|
|
if (tmp < 0.0)
|
|
tmp = -tmp;
|
|
|
|
return atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64;
|
|
}
|
|
|
|
//! Returns if this vector interpreted as a point is on a line between two other points.
|
|
/** It is assumed that the point is on the line. */
|
|
//! \param begin: Beginning vector to compare between.
|
|
//! \param end: Ending vector to compare between.
|
|
//! \return True if this vector is between begin and end. False if not.
|
|
bool isBetweenPoints(const vector2d<T>& begin, const vector2d<T>& end) const
|
|
{
|
|
T f = (end - begin).getLengthSQ();
|
|
return getDistanceFromSQ(begin) < f &&
|
|
getDistanceFromSQ(end) < f;
|
|
}
|
|
|
|
//! returns interpolated vector
|
|
//! \param other: other vector to interpolate between
|
|
//! \param d: value between 0.0f and 1.0f.
|
|
vector2d<T> getInterpolated(const vector2d<T>& other, f32 d) const
|
|
{
|
|
T inv = (T) 1.0 - d;
|
|
return vector2d<T>(other.X*inv + X*d, other.Y*inv + Y*d);
|
|
}
|
|
|
|
//! Returns (quadratically) interpolated vector between this and the two given ones.
|
|
/** \param v2: second vector to interpolate with
|
|
\param v3: third vector to interpolate with
|
|
\param d: value between 0.0f and 1.0f. */
|
|
vector2d<T> getInterpolated_quadratic(const vector2d<T>& v2, const vector2d<T>& v3, const T d) const
|
|
{
|
|
// this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
|
|
const T inv = (T) 1.0 - d;
|
|
const T mul0 = inv * inv;
|
|
const T mul1 = (T) 2.0 * d * inv;
|
|
const T mul2 = d * d;
|
|
|
|
return vector2d<T> ( X * mul0 + v2.X * mul1 + v3.X * mul2,
|
|
Y * mul0 + v2.Y * mul1 + v3.Y * mul2);
|
|
}
|
|
|
|
//! sets this vector to the linearly interpolated vector between a and b.
|
|
/** \param a: first vector to interpolate with
|
|
\param b: second vector to interpolate with
|
|
\param t: value between 0.0f and 1.0f. */
|
|
void interpolate(const vector2d<T>& a, const vector2d<T>& b, const f32 t)
|
|
{
|
|
X = b.X + ( ( a.X - b.X ) * t );
|
|
Y = b.Y + ( ( a.Y - b.Y ) * t );
|
|
}
|
|
|
|
// member variables
|
|
T X, Y;
|
|
};
|
|
|
|
//! Typedef for f32 2d vector.
|
|
typedef vector2d<f32> vector2df;
|
|
//! Typedef for integer 2d vector.
|
|
typedef vector2d<s32> vector2di;
|
|
|
|
template<class S, class T> vector2d<T> operator*(const S scalar, const vector2d<T>& vector) { return vector*scalar; }
|
|
|
|
} // end namespace core
|
|
} // end namespace irr
|
|
|
|
#endif
|
|
|