irrlicht/include/irrMath.h

448 lines
11 KiB
C++

// Copyright (C) 2002-2007 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __IRR_MATH_H_INCLUDED__
#define __IRR_MATH_H_INCLUDED__
#include "IrrCompileConfig.h"
#include "irrTypes.h"
#include <math.h>
#if defined(_IRR_SOLARIS_PLATFORM_) || defined(__BORLANDC__) || defined (__BCPLUSPLUS__) || defined (_WIN32_WCE)
#define sqrtf(X) (f32)sqrt((f64)(X))
#define sinf(X) (f32)sin((f64)(X))
#define cosf(X) (f32)cos((f64)(X))
#define ceilf(X) (f32)ceil((f64)(X))
#define floorf(X) (f32)floor((f64)(X))
#define powf(X,Y) (f32)pow((f64)(X),(f64)(Y))
#define fmodf(X,Y) (f32)fmod((f64)(X),(f64)(Y))
#define fabsf(X) (f32)fabs((f64)(X))
#endif
namespace irr
{
namespace core
{
//! Rounding error constant often used when comparing f32 values.
#ifdef IRRLICHT_FAST_MATH
const f32 ROUNDING_ERROR_32 = 0.00005f;
const f64 ROUNDING_ERROR_64 = 0.000005f;
#else
const f32 ROUNDING_ERROR_32 = 0.000001f;
const f64 ROUNDING_ERROR_64 = 0.00000001f;
#endif
//! Constant for PI.
const f32 PI = 3.14159265359f;
//! Constant for reciprocal of PI.
const f32 RECIPROCAL_PI = 1.0f/PI;
//! Constant for half of PI.
const f32 HALF_PI = PI/2.0f;
//! Constant for 64bit PI.
const f64 PI64 = 3.1415926535897932384626433832795028841971693993751;
//! Constant for 64bit reciprocal of PI.
const f64 RECIPROCAL_PI64 = 1.0/PI64;
//! 32bit Constant for converting from degrees to radians
const f32 DEGTORAD = PI / 180.0f;
//! 32bit constant for converting from radians to degrees (formally known as GRAD_PI)
const f32 RADTODEG = 180.0f / PI;
//! 64bit constant for converting from degrees to radians (formally known as GRAD_PI2)
const f64 DEGTORAD64 = PI64 / 180.0;
//! 64bit constant for converting from radians to degrees
const f64 RADTODEG64 = 180.0 / PI64;
//! returns minimum of two values. Own implementation to get rid of the STL (VS6 problems)
template<class T>
inline const T& min_(const T& a, const T& b)
{
return a < b ? a : b;
}
//! returns minimum of three values. Own implementation to get rid of the STL (VS6 problems)
template<class T>
inline const T& min_(const T& a, const T& b, const T& c)
{
return a < b ? min_(a, c) : min_(b, c);
}
//! returns maximum of two values. Own implementation to get rid of the STL (VS6 problems)
template<class T>
inline const T& max_(const T& a, const T& b)
{
return a < b ? b : a;
}
//! returns maximum of three values. Own implementation to get rid of the STL (VS6 problems)
template<class T>
inline const T& max_(const T& a, const T& b, const T& c)
{
return a < b ? max_(b, c) : max_(a, c);
}
//! returns abs of two values. Own implementation to get rid of STL (VS6 problems)
template<class T>
inline T abs_(const T& a)
{
return a < (T)0 ? -a : a;
}
//! returns linear interpolation of a and b with ratio t
//! \return: a if t==0, b if t==1, and the linear interpolation else
template<class T>
inline T lerp(const T& a, const T& b, const f32 t)
{
return (T)(a*(1.f-t)) + (b*t);
}
//! clamps a value between low and high
template <class T>
inline const T clamp (const T& value, const T& low, const T& high)
{
return min_ (max_(value,low), high);
}
//! returns if a equals b, taking possible rounding errors into account
inline bool equals(const f32 a, const f32 b, const f32 tolerance = ROUNDING_ERROR_32)
{
return (a + tolerance >= b) && (a - tolerance <= b);
}
//! returns if a equals b, taking possible rounding errors into account
inline bool equals(const s32 a, const s32 b, const s32 tolerance = 0)
{
return (a + tolerance >= b) && (a - tolerance <= b);
}
//! returns if a equals b, taking possible rounding errors into account
inline bool equals(const u32 a, const u32 b, const u32 tolerance = 0)
{
return (a + tolerance >= b) && (a - tolerance <= b);
}
//! returns if a equals zero, taking rounding errors into account
inline bool iszero(const f32 a, const f32 tolerance = ROUNDING_ERROR_32)
{
return fabsf ( a ) <= tolerance;
}
//! returns if a equals zero, taking rounding errors into account
inline bool iszero(const s32 a, const s32 tolerance = 0)
{
return ( a & 0x7ffffff ) <= tolerance;
}
//! returns if a equals zero, taking rounding errors into account
inline bool iszero(const u32 a, const u32 tolerance = 0)
{
return a <= tolerance;
}
inline s32 s32_min ( s32 a, s32 b)
{
s32 mask = (a - b) >> 31;
return (a & mask) | (b & ~mask);
}
inline s32 s32_max ( s32 a, s32 b)
{
s32 mask = (a - b) >> 31;
return (b & mask) | (a & ~mask);
}
inline s32 s32_clamp (s32 value, s32 low, s32 high)
{
return s32_min (s32_max(value,low), high);
}
/*
float IEEE-754 bit represenation
0 0x00000000
1.0 0x3f800000
0.5 0x3f000000
3 0x40400000
+inf 0x7f800000
-inf 0xff800000
+NaN 0x7fc00000 or 0x7ff00000
in general: number = (sign ? -1:1) * 2^(exponent) * 1.(mantissa bits)
*/
#define F32_AS_S32(f) (*((s32 *) &(f)))
#define F32_AS_U32(f) (*((u32 *) &(f)))
#define F32_AS_U32_POINTER(f) ( ((u32 *) &(f)))
#define F32_VALUE_0 0x00000000
#define F32_VALUE_1 0x3f800000
#define F32_SIGN_BIT 0x80000000U
#define F32_EXPON_MANTISSA 0x7FFFFFFFU
//! code is taken from IceFPU
//! Integer representation of a floating-point value.
#define IR(x) ((u32&)(x))
//! Absolute integer representation of a floating-point value
#define AIR(x) (IR(x)&0x7fffffff)
//! Floating-point representation of an integer value.
#define FR(x) ((f32&)(x))
#define IEEE_1_0 0x3f800000 //!< integer representation of 1.0
#define IEEE_255_0 0x437f0000 //!< integer representation of 255.0
#ifdef IRRLICHT_FAST_MATH
#define F32_LOWER_0(f) (F32_AS_U32(f) > F32_SIGN_BIT)
#define F32_LOWER_EQUAL_0(f) (F32_AS_S32(f) <= F32_VALUE_0)
#define F32_GREATER_0(f) (F32_AS_S32(f) > F32_VALUE_0)
#define F32_GREATER_EQUAL_0(f) (F32_AS_U32(f) <= F32_SIGN_BIT)
#define F32_EQUAL_1(f) (F32_AS_U32(f) == F32_VALUE_1)
#define F32_EQUAL_0(f) ( (F32_AS_U32(f) & F32_EXPON_MANTISSA ) == F32_VALUE_0)
// only same sign
#define F32_A_GREATER_B(a,b) (F32_AS_S32((a)) > F32_AS_S32((b)))
#else
#define F32_LOWER_0(n) ((n) < 0.0f)
#define F32_LOWER_EQUAL_0(n) ((n) <= 0.0f)
#define F32_GREATER_0(n) ((n) > 0.0f)
#define F32_GREATER_EQUAL_0(n) ((n) >= 0.0f)
#define F32_EQUAL_1(n) ((n) == 1.0f)
#define F32_EQUAL_0(n) ((n) == 0.0f)
#define F32_A_GREATER_B(a,b) ((a) > (b))
#endif
#ifndef REALINLINE
#ifdef _MSC_VER
#define REALINLINE __forceinline
#else
#define REALINLINE inline
#endif
#endif
//! conditional set based on mask and arithmetic shift
REALINLINE u32 if_c_a_else_b ( const s32 condition, const u32 a, const u32 b )
{
return ( ( -condition >> 31 ) & ( a ^ b ) ) ^ b;
}
//! conditional set based on mask and arithmetic shift
REALINLINE u32 if_c_a_else_0 ( const s32 condition, const u32 a )
{
return ( -condition >> 31 ) & a;
}
/*
if (condition) state |= m; else state &= ~m;
*/
REALINLINE void setbit_cond ( u32 &state, s32 condition, u32 mask )
{
// 0, or any postive to mask
//s32 conmask = -condition >> 31;
state ^= ( ( -condition >> 31 ) ^ state ) & mask;
}
inline f32 round_( f32 x )
{
return floorf( x + 0.5f );
}
REALINLINE void clearFPUException ()
{
#ifdef IRRLICHT_FAST_MATH
#ifdef feclearexcept
feclearexcept(FE_ALL_EXCEPT);
#elif defined(_MSC_VER)
__asm fnclex;
#elif defined(__GNUC__) && defined(__x86__)
__asm__ __volatile__ ("fclex \n\t");
#else
# warn clearFPUException not supported.
#endif
#endif
}
REALINLINE f32 reciprocal_squareroot(const f32 x)
{
#ifdef IRRLICHT_FAST_MATH
// comes from Nvidia
#if 1
u32 tmp = (u32(IEEE_1_0 << 1) + IEEE_1_0 - *(u32*)&x) >> 1;
f32 y = *(f32*)&tmp;
return y * (1.47f - 0.47f * x * y * y);
#elif defined(_MSC_VER)
// an sse2 version
__asm
{
movss xmm0, x
rsqrtss xmm0, xmm0
movss x, xmm0
}
return x;
#endif
#else // no fast math
return 1.f / sqrtf ( x );
#endif
}
REALINLINE f32 reciprocal ( const f32 f )
{
#ifdef IRRLICHT_FAST_MATH
//! i do not divide through 0.. (fpu expection)
// instead set f to a high value to get a return value near zero..
// -1000000000000.f.. is use minus to stay negative..
// must test's here (plane.normal dot anything ) checks on <= 0.f
return 1.f / f;
//u32 x = (-(AIR(f) != 0 ) >> 31 ) & ( IR(f) ^ 0xd368d4a5 ) ^ 0xd368d4a5;
//return 1.f / FR ( x );
#else // no fast math
return 1.f / f;
#endif
}
REALINLINE f32 reciprocal_approxim ( const f32 p )
{
#ifdef IRRLICHT_FAST_MATH
register u32 x = 0x7F000000 - IR ( p );
const f32 r = FR ( x );
return r * (2.0f - p * r);
#else // no fast math
return 1.f / p;
#endif
}
REALINLINE s32 floor32(f32 x)
{
#ifdef IRRLICHT_FAST_MATH
const f32 h = 0.5f;
s32 t;
#if defined(_MSC_VER)
__asm
{
fld x
fsub h
fistp t
}
#elif defined(__GNUC__)
__asm__ __volatile__ (
"fsub %2 \n\t"
"fistpl %0"
: "=m" (t)
: "t" (x), "f" (h)
: "st"
);
#else
# warn IRRLICHT_FAST_MATH not supported.
return (s32) floorf ( x );
#endif
return t;
#else // no fast math
return (s32) floorf ( x );
#endif
}
REALINLINE s32 ceil32 ( f32 x )
{
#ifdef IRRLICHT_FAST_MATH
const f32 h = 0.5f;
s32 t;
#if defined(_MSC_VER)
__asm
{
fld x
fadd h
fistp t
}
#elif defined(__GNUC__)
__asm__ __volatile__ (
"fadd %2 \n\t"
"fistpl %0 \n\t"
: "=m"(t)
: "t"(x), "f"(h)
: "st"
);
#else
# warn IRRLICHT_FAST_MATH not supported.
return (s32) ceilf ( x );
#endif
return t;
#else // not fast math
return (s32) ceilf ( x );
#endif
}
REALINLINE s32 round32(f32 x)
{
#if defined(IRRLICHT_FAST_MATH)
s32 t;
#if defined(_MSC_VER)
__asm
{
fld x
fistp t
}
#elif defined(__GNUC__)
__asm__ __volatile__ (
"fistpl %0 \n\t"
: "=m"(t)
: "t"(x)
: "st"
);
#else
# warn IRRLICHT_FAST_MATH not supported.
return (s32) round_(x);
#endif
return t;
#else // no fast math
return (s32) round_(x);
#endif
}
inline f32 f32_max3(const f32 a, const f32 b, const f32 c)
{
return a > b ? (a > c ? a : c) : (b > c ? b : c);
}
inline f32 f32_min3(const f32 a, const f32 b, const f32 c)
{
return a < b ? (a < c ? a : c) : (b < c ? b : c);
}
inline f32 fract ( f32 x )
{
return x - floorf ( x );
}
} // end namespace core
} // end namespace irr
#endif