irrlicht/source/Irrlicht/COpenGLDriver.cpp

3809 lines
110 KiB
C++

// Copyright (C) 2002-2009 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#include "COpenGLDriver.h"
// needed here also because of the create methods' parameters
#include "CNullDriver.h"
#ifdef _IRR_COMPILE_WITH_OPENGL_
#include "COpenGLTexture.h"
#include "COpenGLMaterialRenderer.h"
#include "COpenGLShaderMaterialRenderer.h"
#include "COpenGLSLMaterialRenderer.h"
#include "COpenGLNormalMapRenderer.h"
#include "COpenGLParallaxMapRenderer.h"
#include "CImage.h"
#include "os.h"
#ifdef _IRR_COMPILE_WITH_SDL_DEVICE_
#include <SDL/SDL.h>
#endif
namespace irr
{
namespace video
{
// -----------------------------------------------------------------------
// WINDOWS CONSTRUCTOR
// -----------------------------------------------------------------------
#ifdef _IRR_COMPILE_WITH_WINDOWS_DEVICE_
//! Windows constructor and init code
COpenGLDriver::COpenGLDriver(const irr::SIrrlichtCreationParameters& params,
io::IFileSystem* io, CIrrDeviceWin32* device)
: CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(),
CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true),
AntiAlias(params.AntiAlias), RenderTargetTexture(0),
CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8),
CurrentTarget(ERT_FRAME_BUFFER),
Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer),
HDc(0), Window(static_cast<HWND>(params.WindowId)), HRc(0), DeviceType(EIDT_WIN32)
{
#ifdef _DEBUG
setDebugName("COpenGLDriver");
#endif
}
//! inits the open gl driver
bool COpenGLDriver::initDriver(irr::SIrrlichtCreationParameters params, CIrrDeviceWin32* device)
{
// Set up pixel format descriptor with desired parameters
PIXELFORMATDESCRIPTOR pfd = {
sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor
1, // Version Number
PFD_DRAW_TO_WINDOW | // Format Must Support Window
PFD_SUPPORT_OPENGL | // Format Must Support OpenGL
(params.Doublebuffer?PFD_DOUBLEBUFFER:0) | // Must Support Double Buffering
(params.Stereobuffer?PFD_STEREO:0), // Must Support Stereo Buffer
PFD_TYPE_RGBA, // Request An RGBA Format
params.Bits, // Select Our Color Depth
0, 0, 0, 0, 0, 0, // Color Bits Ignored
0, // No Alpha Buffer
0, // Shift Bit Ignored
0, // No Accumulation Buffer
0, 0, 0, 0, // Accumulation Bits Ignored
params.ZBufferBits, // Z-Buffer (Depth Buffer)
params.Stencilbuffer ? 1 : 0, // Stencil Buffer Depth
0, // No Auxiliary Buffer
PFD_MAIN_PLANE, // Main Drawing Layer
0, // Reserved
0, 0, 0 // Layer Masks Ignored
};
GLuint PixelFormat;
// Create a window to test antialiasing support
const fschar_t* ClassName = __TEXT("GLCIrrDeviceWin32");
HINSTANCE lhInstance = GetModuleHandle(0);
// Register Class
WNDCLASSEX wcex;
wcex.cbSize = sizeof(WNDCLASSEX);
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = (WNDPROC)DefWindowProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = lhInstance;
wcex.hIcon = NULL;
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wcex.lpszMenuName = 0;
wcex.lpszClassName = ClassName;
wcex.hIconSm = 0;
wcex.hIcon = 0;
RegisterClassEx(&wcex);
RECT clientSize;
clientSize.top = 0;
clientSize.left = 0;
clientSize.right = params.WindowSize.Width;
clientSize.bottom = params.WindowSize.Height;
DWORD style = WS_POPUP;
if (!params.Fullscreen)
style = WS_SYSMENU | WS_BORDER | WS_CAPTION | WS_CLIPCHILDREN | WS_CLIPSIBLINGS;
AdjustWindowRect(&clientSize, style, FALSE);
const s32 realWidth = clientSize.right - clientSize.left;
const s32 realHeight = clientSize.bottom - clientSize.top;
const s32 windowLeft = (GetSystemMetrics(SM_CXSCREEN) - realWidth) / 2;
const s32 windowTop = (GetSystemMetrics(SM_CYSCREEN) - realHeight) / 2;
HWND temporary_wnd=CreateWindow(ClassName, __TEXT(""), style, windowLeft, windowTop,
realWidth, realHeight, NULL, NULL, lhInstance, NULL);
if (!temporary_wnd)
{
os::Printer::log("Cannot create a temporary window.", ELL_ERROR);
return false;
}
HDc = GetDC(temporary_wnd);
for (u32 i=0; i<5; ++i)
{
if (i == 1)
{
if (params.Stencilbuffer)
{
os::Printer::log("Cannot create a GL device with stencil buffer, disabling stencil shadows.", ELL_WARNING);
params.Stencilbuffer = false;
pfd.cStencilBits = 0;
}
else
continue;
}
else
if (i == 2)
{
pfd.cDepthBits = 24;
}
if (i == 3)
{
if (params.Bits!=16)
pfd.cDepthBits = 16;
else
continue;
}
else
if (i == 4)
{
// try single buffer
if (params.Doublebuffer)
pfd.dwFlags &= ~PFD_DOUBLEBUFFER;
else
continue;
}
else
if (i == 5)
{
os::Printer::log("Cannot create a GL device context", "No suitable format for temporary window.", ELL_ERROR);
ReleaseDC(temporary_wnd, HDc);
DestroyWindow(temporary_wnd);
return false;
}
// choose pixelformat
PixelFormat = ChoosePixelFormat(HDc, &pfd);
if (PixelFormat)
break;
}
SetPixelFormat(HDc, PixelFormat, &pfd);
HRc=wglCreateContext(HDc);
if (!HRc)
{
os::Printer::log("Cannot create a temporary GL rendering context.", ELL_ERROR);
ReleaseDC(temporary_wnd, HDc);
DestroyWindow(temporary_wnd);
return false;
}
if (!wglMakeCurrent(HDc, HRc))
{
os::Printer::log("Cannot activate a temporary GL rendering context.", ELL_ERROR);
wglDeleteContext(HRc);
ReleaseDC(temporary_wnd, HDc);
DestroyWindow(temporary_wnd);
return false;
}
#ifdef _DEBUG
core::stringc wglExtensions;
#ifdef WGL_ARB_extensions_string
PFNWGLGETEXTENSIONSSTRINGARBPROC irrGetExtensionsString = (PFNWGLGETEXTENSIONSSTRINGARBPROC)wglGetProcAddress("wglGetExtensionsStringARB");
if (irrGetExtensionsString)
wglExtensions = irrGetExtensionsString(HDc);
#elif defined(WGL_EXT_extensions_string)
PFNWGLGETEXTENSIONSSTRINGEXTPROC irrGetExtensionsString = (PFNWGLGETEXTENSIONSSTRINGEXTPROC)wglGetProcAddress("wglGetExtensionsStringEXT");
if (irrGetExtensionsString)
wglExtensions = irrGetExtensionsString(HDc);
#endif
os::Printer::log("WGL_extensions", wglExtensions);
#endif
#ifdef WGL_ARB_pixel_format
PFNWGLCHOOSEPIXELFORMATARBPROC wglChoosePixelFormat_ARB = (PFNWGLCHOOSEPIXELFORMATARBPROC)wglGetProcAddress("wglChoosePixelFormatARB");
if (wglChoosePixelFormat_ARB)
{
// This value determines the number of samples used for antialiasing
// My experience is that 8 does not show a big
// improvement over 4, but 4 shows a big improvement
// over 2.
if(AntiAlias > 32)
AntiAlias = 32;
f32 fAttributes[] = {0.0, 0.0};
s32 iAttributes[] =
{
WGL_DRAW_TO_WINDOW_ARB,GL_TRUE,
WGL_SUPPORT_OPENGL_ARB,GL_TRUE,
WGL_ACCELERATION_ARB,WGL_FULL_ACCELERATION_ARB,
WGL_COLOR_BITS_ARB,(params.Bits==32) ? 24 : 15,
WGL_ALPHA_BITS_ARB,(params.Bits==32) ? 8 : 1,
WGL_DEPTH_BITS_ARB,params.ZBufferBits, // 10,11
WGL_STENCIL_BITS_ARB,(params.Stencilbuffer) ? 1 : 0,
WGL_DOUBLE_BUFFER_ARB,(params.Doublebuffer) ? GL_TRUE : GL_FALSE,
WGL_STEREO_ARB,(params.Stereobuffer) ? GL_TRUE : GL_FALSE,
#ifdef WGL_ARB_multisample
WGL_SAMPLE_BUFFERS_ARB, 1,
WGL_SAMPLES_ARB,AntiAlias, // 20,21
#elif defined(WGL_EXT_multisample)
WGL_SAMPLE_BUFFERS_EXT, 1,
WGL_SAMPLES_EXT,AntiAlias, // 20,21
#elif defined(WGL_3DFX_multisample)
WGL_SAMPLE_BUFFERS_3DFX, 1,
WGL_SAMPLES_3DFX,AntiAlias, // 20,21
#endif
WGL_PIXEL_TYPE_ARB, WGL_TYPE_RGBA_ARB,
// other possible values:
// WGL_ARB_pixel_format_float: WGL_TYPE_RGBA_FLOAT_ARB
// WGL_EXT_pixel_format_packed_float: WGL_TYPE_RGBA_UNSIGNED_FLOAT_EXT
#if 0
#ifdef WGL_EXT_framebuffer_sRGB
WGL_FRAMEBUFFER_SRGB_CAPABLE_EXT, GL_FALSE,
#endif
#endif
0,0
};
s32 rv=0;
// Try to get an acceptable pixel format
while(rv==0 && iAttributes[21]>1)
{
s32 pixelFormat=0;
u32 numFormats=0;
const s32 valid = wglChoosePixelFormat_ARB(HDc,iAttributes,fAttributes,1,&pixelFormat,&numFormats);
if (valid && numFormats>0)
rv = pixelFormat;
else
iAttributes[21] -= 1;
}
if (rv)
{
PixelFormat=rv;
AntiAlias=iAttributes[21];
}
}
else
#endif
AntiAlias=0;
wglMakeCurrent(HDc, NULL);
wglDeleteContext(HRc);
ReleaseDC(temporary_wnd, HDc);
DestroyWindow(temporary_wnd);
// get hdc
HDc=GetDC(Window);
if (!HDc)
{
os::Printer::log("Cannot create a GL device context.", ELL_ERROR);
return false;
}
// search for pixel format the simple way
if (AntiAlias < 2)
{
for (u32 i=0; i<5; ++i)
{
if (i == 1)
{
if (params.Stencilbuffer)
{
os::Printer::log("Cannot create a GL device with stencil buffer, disabling stencil shadows.", ELL_WARNING);
params.Stencilbuffer = false;
pfd.cStencilBits = 0;
}
else
continue;
}
else
if (i == 2)
{
pfd.cDepthBits = 24;
}
if (i == 3)
{
if (params.Bits!=16)
pfd.cDepthBits = 16;
else
continue;
}
else
if (i == 4)
{
os::Printer::log("Cannot create a GL device context", "No suitable format.", ELL_ERROR);
return false;
}
// choose pixelformat
PixelFormat = ChoosePixelFormat(HDc, &pfd);
if (PixelFormat)
break;
}
}
// set pixel format
if (!SetPixelFormat(HDc, PixelFormat, &pfd))
{
os::Printer::log("Cannot set the pixel format.", ELL_ERROR);
return false;
}
// create rendering context
#ifdef WGL_ARB_create_context
PFNWGLCREATECONTEXTATTRIBSARBPROC wglCreateContextAttribs_ARB = (PFNWGLCREATECONTEXTATTRIBSARBPROC)wglGetProcAddress("wglCreateContextAttribsARB");
if (wglCreateContextAttribs_ARB)
{
int iAttribs[] =
{
WGL_CONTEXT_MAJOR_VERSION_ARB, 3,
WGL_CONTEXT_MINOR_VERSION_ARB, 1,
0
};
HRc=wglCreateContextAttribs_ARB(HDc, 0, iAttribs);
}
else
#endif
HRc=wglCreateContext(HDc);
if (!HRc)
{
os::Printer::log("Cannot create a GL rendering context.", ELL_ERROR);
return false;
}
// activate rendering context
if (!wglMakeCurrent(HDc, HRc))
{
os::Printer::log("Cannot activate GL rendering context", ELL_ERROR);
wglDeleteContext(HRc);
return false;
}
int pf = GetPixelFormat(HDc);
DescribePixelFormat(HDc, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);
if (pfd.cAlphaBits != 0)
{
if (pfd.cRedBits == 8)
ColorFormat = ECF_A8R8G8B8;
else
ColorFormat = ECF_A1R5G5B5;
}
else
{
if (pfd.cRedBits == 8)
ColorFormat = ECF_R8G8B8;
else
ColorFormat = ECF_R5G6B5;
}
genericDriverInit(params.WindowSize, params.Stencilbuffer);
#ifdef WGL_EXT_swap_control
PFNWGLSWAPINTERVALEXTPROC wglSwapIntervalEXT;
// vsync extension
wglSwapIntervalEXT = (PFNWGLSWAPINTERVALEXTPROC)wglGetProcAddress("wglSwapIntervalEXT");
// set vsync
if (wglSwapIntervalEXT)
wglSwapIntervalEXT(params.Vsync ? 1 : 0);
#endif
// set exposed data
ExposedData.OpenGLWin32.HDc = HDc;
ExposedData.OpenGLWin32.HRc = HRc;
ExposedData.OpenGLWin32.HWnd = Window;
return true;
}
#endif // _IRR_COMPILE_WITH_WINDOWS_DEVICE_
// -----------------------------------------------------------------------
// MacOSX CONSTRUCTOR
// -----------------------------------------------------------------------
#ifdef _IRR_COMPILE_WITH_OSX_DEVICE_
//! Windows constructor and init code
COpenGLDriver::COpenGLDriver(const SIrrlichtCreationParameters& params,
io::IFileSystem* io, CIrrDeviceMacOSX *device)
: CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(),
CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true),
AntiAlias(params.AntiAlias), RenderTargetTexture(0),
CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8),
CurrentTarget(ERT_FRAME_BUFFER),
Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer),
_device(device), DeviceType(EIDT_OSX)
{
#ifdef _DEBUG
setDebugName("COpenGLDriver");
#endif
genericDriverInit(params.WindowSize, params.Stencilbuffer);
}
#endif
// -----------------------------------------------------------------------
// LINUX CONSTRUCTOR
// -----------------------------------------------------------------------
#ifdef _IRR_COMPILE_WITH_X11_DEVICE_
//! Linux constructor and init code
COpenGLDriver::COpenGLDriver(const SIrrlichtCreationParameters& params,
io::IFileSystem* io, CIrrDeviceLinux* device)
: CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(),
CurrentRenderMode(ERM_NONE), ResetRenderStates(true),
Transformation3DChanged(true), AntiAlias(params.AntiAlias),
RenderTargetTexture(0), CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8),
CurrentTarget(ERT_FRAME_BUFFER),
Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer), DeviceType(EIDT_X11)
{
#ifdef _DEBUG
setDebugName("COpenGLDriver");
#endif
}
//! inits the open gl driver
bool COpenGLDriver::initDriver(irr::SIrrlichtCreationParameters params, CIrrDeviceLinux* device)
{
ExposedData.OpenGLLinux.X11Context = glXGetCurrentContext();
ExposedData.OpenGLLinux.X11Display = glXGetCurrentDisplay();
ExposedData.OpenGLLinux.X11Window = (unsigned long)params.WindowId;
Drawable = glXGetCurrentDrawable();
genericDriverInit(params.WindowSize, params.Stencilbuffer);
// set vsync
//TODO: Check GLX_EXT_swap_control and GLX_MESA_swap_control
#ifdef GLX_SGI_swap_control
#ifdef _IRR_OPENGL_USE_EXTPOINTER_
if (params.Vsync && glxSwapIntervalSGI)
glxSwapIntervalSGI(1);
#else
if (params.Vsync)
glXSwapIntervalSGI(1);
#endif
#endif
return true;
}
#endif // _IRR_COMPILE_WITH_X11_DEVICE_
// -----------------------------------------------------------------------
// SDL CONSTRUCTOR
// -----------------------------------------------------------------------
#ifdef _IRR_COMPILE_WITH_SDL_DEVICE_
//! SDL constructor and init code
COpenGLDriver::COpenGLDriver(const SIrrlichtCreationParameters& params,
io::IFileSystem* io, CIrrDeviceSDL* device)
: CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(),
CurrentRenderMode(ERM_NONE), ResetRenderStates(true),
Transformation3DChanged(true), AntiAlias(params.AntiAlias),
RenderTargetTexture(0), CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8),
CurrentTarget(ERT_FRAME_BUFFER),
Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer), DeviceType(EIDT_SDL)
{
#ifdef _DEBUG
setDebugName("COpenGLDriver");
#endif
genericDriverInit(params.WindowSize, params.Stencilbuffer);
}
#endif // _IRR_COMPILE_WITH_SDL_DEVICE_
//! destructor
COpenGLDriver::~COpenGLDriver()
{
RequestedLights.clear();
deleteMaterialRenders();
// I get a blue screen on my laptop, when I do not delete the
// textures manually before releasing the dc. Oh how I love this.
deleteAllTextures();
#ifdef _IRR_COMPILE_WITH_WINDOWS_DEVICE_
if (DeviceType == EIDT_WIN32)
{
if (HRc)
{
if (!wglMakeCurrent(0, 0))
os::Printer::log("Release of dc and rc failed.", ELL_WARNING);
if (!wglDeleteContext(HRc))
os::Printer::log("Release of rendering context failed.", ELL_WARNING);
}
if (HDc)
ReleaseDC(Window, HDc);
}
#endif
}
// -----------------------------------------------------------------------
// METHODS
// -----------------------------------------------------------------------
bool COpenGLDriver::genericDriverInit(const core::dimension2d<u32>& screenSize, bool stencilBuffer)
{
Name=L"OpenGL ";
Name.append(glGetString(GL_VERSION));
s32 pos=Name.findNext(L' ', 7);
if (pos != -1)
Name=Name.subString(0, pos);
printVersion();
// print renderer information
const GLubyte* renderer = glGetString(GL_RENDERER);
const GLubyte* vendor = glGetString(GL_VENDOR);
if (renderer && vendor)
{
os::Printer::log(reinterpret_cast<const c8*>(renderer), reinterpret_cast<const c8*>(vendor), ELL_INFORMATION);
VendorName = reinterpret_cast<const c8*>(vendor);
}
u32 i;
for (i=0; i<MATERIAL_MAX_TEXTURES; ++i)
CurrentTexture[i]=0;
// load extensions
initExtensions(stencilBuffer);
if (queryFeature(EVDF_ARB_GLSL))
{
char buf[32];
const u32 maj = ShaderLanguageVersion/100;
snprintf(buf, 32, "%u.%u", maj, ShaderLanguageVersion-maj*100);
os::Printer::log("GLSL version", buf, ELL_INFORMATION);
}
else
os::Printer::log("GLSL not available.", ELL_INFORMATION);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
// Reset The Current Viewport
glViewport(0, 0, screenSize.Width, screenSize.Height);
UserClipPlanes.reallocate(MaxUserClipPlanes);
for (i=0; i<MaxUserClipPlanes; ++i)
UserClipPlanes.push_back(SUserClipPlane());
for (i=0; i<ETS_COUNT; ++i)
setTransform(static_cast<E_TRANSFORMATION_STATE>(i), core::IdentityMatrix);
setAmbientLight(SColorf(0.0f,0.0f,0.0f,0.0f));
#ifdef GL_EXT_separate_specular_color
if (FeatureAvailable[IRR_EXT_separate_specular_color])
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
#endif
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
// This is a fast replacement for NORMALIZE_NORMALS
// if ((Version>101) || FeatureAvailable[IRR_EXT_rescale_normal])
// glEnable(GL_RESCALE_NORMAL_EXT);
glClearDepth(1.0);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
glHint(GL_POINT_SMOOTH_HINT, GL_FASTEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
// adjust flat coloring scheme to DirectX version
#if defined(GL_ARB_provoking_vertex) || defined(GL_EXT_provoking_vertex)
extGlProvokingVertex(GL_FIRST_VERTEX_CONVENTION_EXT);
#endif
// create material renderers
createMaterialRenderers();
// set the renderstates
setRenderStates3DMode();
glAlphaFunc(GL_GREATER, 0.f);
// set fog mode
setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog);
// create matrix for flipping textures
TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0,0), core::vector2df(0,1.0f), core::vector2df(1.0f,-1.0f));
// We need to reset once more at the beginning of the first rendering.
// This fixes problems with intermediate changes to the material during texture load.
ResetRenderStates = true;
return true;
}
void COpenGLDriver::createMaterialRenderers()
{
// create OpenGL material renderers
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SOLID(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SOLID_2_LAYER(this));
// add the same renderer for all lightmap types
COpenGLMaterialRenderer_LIGHTMAP* lmr = new COpenGLMaterialRenderer_LIGHTMAP(this);
addMaterialRenderer(lmr); // for EMT_LIGHTMAP:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_ADD:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M2:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M4:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M2:
addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M4:
lmr->drop();
// add remaining material renderer
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_DETAIL_MAP(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SPHERE_MAP(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_REFLECTION_2_LAYER(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ADD_COLOR(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_VERTEX_ALPHA(this));
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_REFLECTION_2_LAYER(this));
// add normal map renderers
s32 tmp = 0;
video::IMaterialRenderer* renderer = 0;
renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_SOLID].Renderer);
renderer->drop();
renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer);
renderer->drop();
renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer);
renderer->drop();
// add parallax map renderers
renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_SOLID].Renderer);
renderer->drop();
renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer);
renderer->drop();
renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer);
renderer->drop();
// add basic 1 texture blending
addAndDropMaterialRenderer(new COpenGLMaterialRenderer_ONETEXTURE_BLEND(this));
}
//! presents the rendered scene on the screen, returns false if failed
bool COpenGLDriver::endScene()
{
CNullDriver::endScene();
glFlush();
#ifdef _IRR_COMPILE_WITH_WINDOWS_DEVICE_
if (DeviceType == EIDT_WIN32)
return SwapBuffers(HDc) == TRUE;
#endif
#ifdef _IRR_COMPILE_WITH_X11_DEVICE_
if (DeviceType == EIDT_X11)
{
glXSwapBuffers((Display*)ExposedData.OpenGLLinux.X11Display, Drawable);
return true;
}
#endif
#ifdef _IRR_COMPILE_WITH_OSX_DEVICE_
if (DeviceType == EIDT_OSX)
{
_device->flush();
return true;
}
#endif
#ifdef _IRR_COMPILE_WITH_SDL_DEVICE_
if (DeviceType == EIDT_SDL)
{
SDL_GL_SwapBuffers();
return true;
}
#endif
// todo: console device present
return false;
}
//! clears the zbuffer and color buffer
void COpenGLDriver::clearBuffers(bool backBuffer, bool zBuffer, bool stencilBuffer, SColor color)
{
GLbitfield mask = 0;
if (backBuffer)
{
const f32 inv = 1.0f / 255.0f;
glClearColor(color.getRed() * inv, color.getGreen() * inv,
color.getBlue() * inv, color.getAlpha() * inv);
mask |= GL_COLOR_BUFFER_BIT;
}
if (zBuffer)
{
glDepthMask(GL_TRUE);
LastMaterial.ZWriteEnable=true;
mask |= GL_DEPTH_BUFFER_BIT;
}
if (stencilBuffer)
mask |= GL_STENCIL_BUFFER_BIT;
glClear(mask);
}
//! init call for rendering start
bool COpenGLDriver::beginScene(bool backBuffer, bool zBuffer, SColor color,
void* windowId, core::rect<s32>* sourceRect)
{
CNullDriver::beginScene(backBuffer, zBuffer, color, windowId, sourceRect);
#if defined(_IRR_COMPILE_WITH_SDL_DEVICE_)
if (DeviceType == EIDT_SDL)
{
// todo: SDL sets glFrontFace(GL_CCW) after driver creation,
// it would be better if this was fixed elsewhere.
glFrontFace(GL_CW);
}
#endif
clearBuffers(backBuffer, zBuffer, false, color);
return true;
}
//! Returns the transformation set by setTransform
const core::matrix4& COpenGLDriver::getTransform(E_TRANSFORMATION_STATE state) const
{
return Matrices[state];
}
//! sets transformation
void COpenGLDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat)
{
Matrices[state] = mat;
Transformation3DChanged = true;
switch (state)
{
case ETS_VIEW:
case ETS_WORLD:
{
// OpenGL only has a model matrix, view and world is not existent. so lets fake these two.
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer());
// we have to update the clip planes to the latest view matrix
for (u32 i=0; i<MaxUserClipPlanes; ++i)
if (UserClipPlanes[i].Enabled)
uploadClipPlane(i);
}
break;
case ETS_PROJECTION:
{
GLfloat glmat[16];
createGLMatrix(glmat, mat);
// flip z to compensate OpenGLs right-hand coordinate system
glmat[12] *= -1.0f;
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(glmat);
}
break;
case ETS_COUNT:
return;
default:
{
const u32 i = state - ETS_TEXTURE_0;
if (i >= MATERIAL_MAX_TEXTURES)
break;
const bool isRTT = Material.getTexture(i) && Material.getTexture(i)->isRenderTarget();
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB + i);
glMatrixMode(GL_TEXTURE);
if (!isRTT && mat.isIdentity() )
glLoadIdentity();
else
{
GLfloat glmat[16];
if (isRTT)
createGLTextureMatrix(glmat, mat * TextureFlipMatrix);
else
createGLTextureMatrix(glmat, mat);
glLoadMatrixf(glmat);
}
break;
}
}
}
bool COpenGLDriver::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
if (!FeatureAvailable[IRR_ARB_vertex_buffer_object])
return false;
#if defined(GL_ARB_vertex_buffer_object)
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void* vertices=mb->getVertices();
const u32 vertexCount=mb->getVertexCount();
const E_VERTEX_TYPE vType=mb->getVertexType();
const u32 vertexSize = getVertexPitchFromType(vType);
//buffer vertex data, and convert colours...
core::array<c8> buffer(vertexSize * vertexCount);
memcpy(buffer.pointer(), vertices, vertexSize * vertexCount);
// in order to convert the colors into opengl format (RGBA)
switch (vType)
{
case EVT_STANDARD:
{
S3DVertex* pb = reinterpret_cast<S3DVertex*>(buffer.pointer());
const S3DVertex* po = static_cast<const S3DVertex*>(vertices);
for (u32 i=0; i<vertexCount; i++)
{
po[i].Color.toOpenGLColor((u8*)&(pb[i].Color));
}
}
break;
case EVT_2TCOORDS:
{
S3DVertex2TCoords* pb = reinterpret_cast<S3DVertex2TCoords*>(buffer.pointer());
const S3DVertex2TCoords* po = static_cast<const S3DVertex2TCoords*>(vertices);
for (u32 i=0; i<vertexCount; i++)
{
po[i].Color.toOpenGLColor((u8*)&(pb[i].Color));
}
}
break;
case EVT_TANGENTS:
{
S3DVertexTangents* pb = reinterpret_cast<S3DVertexTangents*>(buffer.pointer());
const S3DVertexTangents* po = static_cast<const S3DVertexTangents*>(vertices);
for (u32 i=0; i<vertexCount; i++)
{
po[i].Color.toOpenGLColor((u8*)&(pb[i].Color));
}
}
break;
default:
{
return false;
}
}
//get or create buffer
bool newBuffer=false;
if (!HWBuffer->vbo_verticesID)
{
extGlGenBuffers(1, &HWBuffer->vbo_verticesID);
if (!HWBuffer->vbo_verticesID)
return false;
newBuffer=true;
}
else if (HWBuffer->vbo_verticesSize < vertexCount*vertexSize)
{
newBuffer=true;
}
extGlBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID);
//copy data to graphics card
glGetError(); // clear error storage
if (!newBuffer)
extGlBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * vertexSize, buffer.const_pointer());
else
{
HWBuffer->vbo_verticesSize = vertexCount*vertexSize;
if (HWBuffer->Mapped_Vertex==scene::EHM_STATIC)
extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_STATIC_DRAW);
else if (HWBuffer->Mapped_Vertex==scene::EHM_DYNAMIC)
extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_DYNAMIC_DRAW);
else //scene::EHM_STREAM
extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, buffer.const_pointer(), GL_STREAM_DRAW);
}
extGlBindBuffer(GL_ARRAY_BUFFER, 0);
return (glGetError() == GL_NO_ERROR);
#else
return false;
#endif
}
bool COpenGLDriver::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer)
{
if (!HWBuffer)
return false;
if (!FeatureAvailable[IRR_ARB_vertex_buffer_object])
return false;
#if defined(GL_ARB_vertex_buffer_object)
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void* indices=mb->getIndices();
u32 indexCount= mb->getIndexCount();
GLenum indexSize;
switch (mb->getIndexType())
{
case EIT_16BIT:
{
indexSize=sizeof(u16);
break;
}
case EIT_32BIT:
{
indexSize=sizeof(u32);
break;
}
default:
{
return false;
}
}
//get or create buffer
bool newBuffer=false;
if (!HWBuffer->vbo_indicesID)
{
extGlGenBuffers(1, &HWBuffer->vbo_indicesID);
if (!HWBuffer->vbo_indicesID)
return false;
newBuffer=true;
}
else if (HWBuffer->vbo_indicesSize < indexCount*indexSize)
{
newBuffer=true;
}
extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
//copy data to graphics card
glGetError(); // clear error storage
if (!newBuffer)
extGlBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices);
else
{
HWBuffer->vbo_indicesSize = indexCount*indexSize;
if (HWBuffer->Mapped_Index==scene::EHM_STATIC)
extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW);
else if (HWBuffer->Mapped_Index==scene::EHM_DYNAMIC)
extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW);
else //scene::EHM_STREAM
extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STREAM_DRAW);
}
extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
return (glGetError() == GL_NO_ERROR);
#else
return false;
#endif
}
//! updates hardware buffer if needed
bool COpenGLDriver::updateHardwareBuffer(SHWBufferLink *HWBuffer)
{
if (!HWBuffer)
return false;
if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER)
{
if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex()
|| !((SHWBufferLink_opengl*)HWBuffer)->vbo_verticesID)
{
HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex();
if (!updateVertexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer))
return false;
}
}
if (HWBuffer->Mapped_Index!=scene::EHM_NEVER)
{
if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index()
|| !((SHWBufferLink_opengl*)HWBuffer)->vbo_indicesID)
{
HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index();
if (!updateIndexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer))
return false;
}
}
return true;
}
//! Create hardware buffer from meshbuffer
COpenGLDriver::SHWBufferLink *COpenGLDriver::createHardwareBuffer(const scene::IMeshBuffer* mb)
{
#if defined(GL_ARB_vertex_buffer_object)
if (!mb || (mb->getHardwareMappingHint_Index()==scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex()==scene::EHM_NEVER))
return 0;
SHWBufferLink_opengl *HWBuffer=new SHWBufferLink_opengl(mb);
//add to map
HWBufferMap.insert(HWBuffer->MeshBuffer, HWBuffer);
HWBuffer->ChangedID_Vertex=HWBuffer->MeshBuffer->getChangedID_Vertex();
HWBuffer->ChangedID_Index=HWBuffer->MeshBuffer->getChangedID_Index();
HWBuffer->Mapped_Vertex=mb->getHardwareMappingHint_Vertex();
HWBuffer->Mapped_Index=mb->getHardwareMappingHint_Index();
HWBuffer->LastUsed=0;
HWBuffer->vbo_verticesID=0;
HWBuffer->vbo_indicesID=0;
HWBuffer->vbo_verticesSize=0;
HWBuffer->vbo_indicesSize=0;
if (!updateHardwareBuffer(HWBuffer))
{
deleteHardwareBuffer(HWBuffer);
return 0;
}
return HWBuffer;
#else
return 0;
#endif
}
void COpenGLDriver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
#if defined(GL_ARB_vertex_buffer_object)
SHWBufferLink_opengl *HWBuffer=(SHWBufferLink_opengl*)_HWBuffer;
if (HWBuffer->vbo_verticesID)
{
extGlDeleteBuffers(1, &HWBuffer->vbo_verticesID);
HWBuffer->vbo_verticesID=0;
}
if (HWBuffer->vbo_indicesID)
{
extGlDeleteBuffers(1, &HWBuffer->vbo_indicesID);
HWBuffer->vbo_indicesID=0;
}
#endif
CNullDriver::deleteHardwareBuffer(_HWBuffer);
}
//! Draw hardware buffer
void COpenGLDriver::drawHardwareBuffer(SHWBufferLink *_HWBuffer)
{
if (!_HWBuffer)
return;
updateHardwareBuffer(_HWBuffer); //check if update is needed
_HWBuffer->LastUsed=0; //reset count
#if defined(GL_ARB_vertex_buffer_object)
SHWBufferLink_opengl *HWBuffer=(SHWBufferLink_opengl*)_HWBuffer;
const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer;
const void *vertices=mb->getVertices();
const void *indexList=mb->getIndices();
if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER)
{
extGlBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID);
vertices=0;
}
if (HWBuffer->Mapped_Index!=scene::EHM_NEVER)
{
extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID);
indexList=0;
}
drawVertexPrimitiveList(vertices, mb->getVertexCount(), indexList, mb->getIndexCount()/3, mb->getVertexType(), scene::EPT_TRIANGLES, mb->getIndexType());
if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER)
extGlBindBuffer(GL_ARRAY_BUFFER, 0);
if (HWBuffer->Mapped_Index!=scene::EHM_NEVER)
extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
#endif
}
// small helper function to create vertex buffer object adress offsets
static inline u8* buffer_offset(const long offset)
{
return ((u8*)0 + offset);
}
//! draws a vertex primitive list
void COpenGLDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!primitiveCount || !vertexCount)
return;
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
if (vertices)
createColorBuffer(vertices, vertexCount, vType);
// draw everything
setRenderStates3DMode();
if (MultiTextureExtension)
extGlClientActiveTexture(GL_TEXTURE0_ARB);
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES))
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES))
glEnableClientState(GL_NORMAL_ARRAY);
if (vertices)
glColorPointer(4, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]);
switch (vType)
{
case EVT_STANDARD:
if (vertices)
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords);
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
}
else
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertex), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), 0);
}
if (MultiTextureExtension && CurrentTexture[1])
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28));
}
break;
case EVT_2TCOORDS:
if (vertices)
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords);
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Pos);
}
else
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0));
}
if (MultiTextureExtension)
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords2);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36));
}
break;
case EVT_TANGENTS:
if (vertices)
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Normal);
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].TCoords);
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Pos);
}
else
{
glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(12));
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28));
glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0));
}
if (MultiTextureExtension)
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Tangent);
else
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(36));
extGlClientActiveTexture(GL_TEXTURE2_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Binormal);
else
glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(48));
}
break;
}
renderArray(indexList, primitiveCount, pType, iType);
if (MultiTextureExtension)
{
if (vType==EVT_TANGENTS)
{
extGlClientActiveTexture(GL_TEXTURE2_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
if ((vType!=EVT_STANDARD) || CurrentTexture[1])
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
extGlClientActiveTexture(GL_TEXTURE0_ARB);
}
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
void COpenGLDriver::createColorBuffer(const void* vertices, u32 vertexCount, E_VERTEX_TYPE vType)
{
// convert colors to gl color format.
vertexCount *= 4; //reused as color component count
ColorBuffer.set_used(vertexCount);
u32 i;
switch (vType)
{
case EVT_STANDARD:
{
const S3DVertex* p = static_cast<const S3DVertex*>(vertices);
for (i=0; i<vertexCount; i+=4)
{
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
}
break;
case EVT_2TCOORDS:
{
const S3DVertex2TCoords* p = static_cast<const S3DVertex2TCoords*>(vertices);
for (i=0; i<vertexCount; i+=4)
{
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
}
break;
case EVT_TANGENTS:
{
const S3DVertexTangents* p = static_cast<const S3DVertexTangents*>(vertices);
for (i=0; i<vertexCount; i+=4)
{
p->Color.toOpenGLColor(&ColorBuffer[i]);
++p;
}
}
break;
}
}
void COpenGLDriver::renderArray(const void* indexList, u32 primitiveCount,
scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
GLenum indexSize=0;
switch (iType)
{
case EIT_16BIT:
{
indexSize=GL_UNSIGNED_SHORT;
break;
}
case EIT_32BIT:
{
indexSize=GL_UNSIGNED_INT;
break;
}
}
switch (pType)
{
case scene::EPT_POINTS:
case scene::EPT_POINT_SPRITES:
{
#ifdef GL_ARB_point_sprite
if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite])
glEnable(GL_POINT_SPRITE_ARB);
#endif
// prepare size and attenuation (where supported)
GLfloat particleSize=Material.Thickness;
// if (AntiAlias)
// particleSize=core::clamp(particleSize, DimSmoothedPoint[0], DimSmoothedPoint[1]);
// else
particleSize=core::clamp(particleSize, DimAliasedPoint[0], DimAliasedPoint[1]);
#if defined(GL_VERSION_1_4) || defined(GL_ARB_point_parameters) || defined(GL_EXT_point_parameters) || defined(GL_SGIS_point_parameters)
const float att[] = {1.0f, 1.0f, 0.0f};
#if defined(GL_VERSION_1_4)
extGlPointParameterfv(GL_POINT_DISTANCE_ATTENUATION, att);
// extGlPointParameterf(GL_POINT_SIZE_MIN,1.f);
extGlPointParameterf(GL_POINT_SIZE_MAX, particleSize);
extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE, 1.0f);
#elif defined(GL_ARB_point_parameters)
extGlPointParameterfv(GL_POINT_DISTANCE_ATTENUATION_ARB, att);
// extGlPointParameterf(GL_POINT_SIZE_MIN_ARB,1.f);
extGlPointParameterf(GL_POINT_SIZE_MAX_ARB, particleSize);
extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE_ARB, 1.0f);
#elif defined(GL_EXT_point_parameters)
extGlPointParameterfv(GL_DISTANCE_ATTENUATION_EXT, att);
// extGlPointParameterf(GL_POINT_SIZE_MIN_EXT,1.f);
extGlPointParameterf(GL_POINT_SIZE_MAX_EXT, particleSize);
extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE_EXT, 1.0f);
#elif defined(GL_SGIS_point_parameters)
extGlPointParameterfv(GL_DISTANCE_ATTENUATION_SGIS, att);
// extGlPointParameterf(GL_POINT_SIZE_MIN_SGIS,1.f);
extGlPointParameterf(GL_POINT_SIZE_MAX_SGIS, particleSize);
extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE_SGIS, 1.0f);
#endif
#endif
glPointSize(particleSize);
#ifdef GL_ARB_point_sprite
if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite])
glTexEnvf(GL_POINT_SPRITE_ARB,GL_COORD_REPLACE, GL_TRUE);
#endif
glDrawArrays(GL_POINTS, 0, primitiveCount);
#ifdef GL_ARB_point_sprite
if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite])
{
glDisable(GL_POINT_SPRITE_ARB);
glTexEnvf(GL_POINT_SPRITE_ARB,GL_COORD_REPLACE, GL_FALSE);
}
#endif
}
break;
case scene::EPT_LINE_STRIP:
glDrawElements(GL_LINE_STRIP, primitiveCount+1, indexSize, indexList);
break;
case scene::EPT_LINE_LOOP:
glDrawElements(GL_LINE_LOOP, primitiveCount, indexSize, indexList);
break;
case scene::EPT_LINES:
glDrawElements(GL_LINES, primitiveCount*2, indexSize, indexList);
break;
case scene::EPT_TRIANGLE_STRIP:
glDrawElements(GL_TRIANGLE_STRIP, primitiveCount+2, indexSize, indexList);
break;
case scene::EPT_TRIANGLE_FAN:
glDrawElements(GL_TRIANGLE_FAN, primitiveCount+2, indexSize, indexList);
break;
case scene::EPT_TRIANGLES:
glDrawElements(GL_TRIANGLES, primitiveCount*3, indexSize, indexList);
break;
case scene::EPT_QUAD_STRIP:
glDrawElements(GL_QUAD_STRIP, primitiveCount*2+2, indexSize, indexList);
break;
case scene::EPT_QUADS:
glDrawElements(GL_QUADS, primitiveCount*4, indexSize, indexList);
break;
case scene::EPT_POLYGON:
glDrawElements(GL_POLYGON, primitiveCount, indexSize, indexList);
break;
}
}
//! draws a vertex primitive list in 2d
void COpenGLDriver::draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount,
const void* indexList, u32 primitiveCount,
E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType)
{
if (!primitiveCount || !vertexCount)
return;
if (!checkPrimitiveCount(primitiveCount))
return;
CNullDriver::draw2DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType);
if (vertices)
createColorBuffer(vertices, vertexCount, vType);
// draw everything
this->setActiveTexture(0, Material.getTexture(0));
if (Material.MaterialType==EMT_ONETEXTURE_BLEND)
{
E_BLEND_FACTOR srcFact;
E_BLEND_FACTOR dstFact;
E_MODULATE_FUNC modulo;
u32 alphaSource;
unpack_texureBlendFunc ( srcFact, dstFact, modulo, alphaSource, Material.MaterialTypeParam);
setRenderStates2DMode(alphaSource&video::EAS_VERTEX_COLOR, (Material.getTexture(0) != 0), (alphaSource&video::EAS_TEXTURE) != 0);
}
else
setRenderStates2DMode(Material.MaterialType==EMT_TRANSPARENT_VERTEX_ALPHA, (Material.getTexture(0) != 0), Material.MaterialType==EMT_TRANSPARENT_ALPHA_CHANNEL);
if (MultiTextureExtension)
extGlClientActiveTexture(GL_TEXTURE0_ARB);
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES))
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glColorPointer(4, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]);
switch (vType)
{
case EVT_STANDARD:
if (vertices)
{
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords);
glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos);
}
else
{
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28));
glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), 0);
}
if (MultiTextureExtension && CurrentTexture[1])
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28));
}
break;
case EVT_2TCOORDS:
if (vertices)
{
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords);
glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Pos);
}
else
{
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28));
glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0));
}
if (MultiTextureExtension)
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (vertices)
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords2);
else
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36));
}
break;
case EVT_TANGENTS:
if (vertices)
{
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].TCoords);
glVertexPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Pos);
}
else
{
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24));
glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28));
glVertexPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0));
}
break;
}
renderArray(indexList, primitiveCount, pType, iType);
if (MultiTextureExtension)
{
if ((vType!=EVT_STANDARD) || CurrentTexture[1])
{
extGlClientActiveTexture(GL_TEXTURE1_ARB);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
extGlClientActiveTexture(GL_TEXTURE0_ARB);
}
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
//! draws a 2d image, using a color and the alpha channel of the texture if
//! desired. The image is drawn at pos, clipped against clipRect (if != 0).
//! Only the subtexture defined by sourceRect is used.
void COpenGLDriver::draw2DImage(const video::ITexture* texture,
const core::position2d<s32>& pos,
const core::rect<s32>& sourceRect,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
if (!sourceRect.isValid())
return;
core::position2d<s32> targetPos(pos);
core::position2d<s32> sourcePos(sourceRect.UpperLeftCorner);
// This needs to be signed as it may go negative.
core::dimension2d<s32> sourceSize(sourceRect.getSize());
if (clipRect)
{
if (targetPos.X < clipRect->UpperLeftCorner.X)
{
sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X;
targetPos.X = clipRect->UpperLeftCorner.X;
}
if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y < clipRect->UpperLeftCorner.Y)
{
sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y;
targetPos.Y = clipRect->UpperLeftCorner.Y;
}
if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y;
if (sourceSize.Height <= 0)
return;
}
}
// clip these coordinates
if (targetPos.X<0)
{
sourceSize.Width += targetPos.X;
if (sourceSize.Width <= 0)
return;
sourcePos.X -= targetPos.X;
targetPos.X = 0;
}
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width)
{
sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width;
if (sourceSize.Width <= 0)
return;
}
if (targetPos.Y<0)
{
sourceSize.Height += targetPos.Y;
if (sourceSize.Height <= 0)
return;
sourcePos.Y -= targetPos.Y;
targetPos.Y = 0;
}
if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height)
{
sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height;
if (sourceSize.Height <= 0)
return;
}
// ok, we've clipped everything.
// now draw it.
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const core::dimension2d<u32>& ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourcePos.X * invW,
(isRTT?(sourcePos.Y + sourceSize.Height):sourcePos.Y) * invH,
(sourcePos.X + sourceSize.Width) * invW,
(isRTT?sourcePos.Y:(sourcePos.Y + sourceSize.Height)) * invH);
const core::rect<s32> poss(targetPos, sourceSize);
disableTextures(1);
if (!setActiveTexture(0, texture))
return;
setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture);
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
glBegin(GL_QUADS);
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.UpperLeftCorner.Y));
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.UpperLeftCorner.Y));
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.LowerRightCorner.Y));
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.LowerRightCorner.Y));
glEnd();
}
//! The same, but with a four element array of colors, one for each vertex
void COpenGLDriver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect,
const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect,
const video::SColor* const colors, bool useAlphaChannelOfTexture)
{
if (!texture)
return;
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const core::dimension2d<u32>& ss = texture->getOriginalSize();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
const core::rect<f32> tcoords(
sourceRect.UpperLeftCorner.X * invW,
(isRTT?sourceRect.LowerRightCorner.Y:sourceRect.UpperLeftCorner.Y) * invH,
sourceRect.LowerRightCorner.X * invW,
(isRTT?sourceRect.UpperLeftCorner.Y:sourceRect.LowerRightCorner.Y) *invH);
const video::SColor temp[4] =
{
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF,
0xFFFFFFFF
};
const video::SColor* const useColor = colors ? colors : temp;
disableTextures(1);
setActiveTexture(0, texture);
setRenderStates2DMode(useColor[0].getAlpha()<255 || useColor[1].getAlpha()<255 ||
useColor[2].getAlpha()<255 || useColor[3].getAlpha()<255,
true, useAlphaChannelOfTexture);
if (clipRect)
{
if (!clipRect->isValid())
return;
glEnable(GL_SCISSOR_TEST);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height-clipRect->LowerRightCorner.Y,
clipRect->getWidth(), clipRect->getHeight());
}
glBegin(GL_QUADS);
glColor4ub(useColor[0].getRed(), useColor[0].getGreen(), useColor[0].getBlue(), useColor[0].getAlpha());
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(destRect.UpperLeftCorner.X), GLfloat(destRect.UpperLeftCorner.Y));
glColor4ub(useColor[3].getRed(), useColor[3].getGreen(), useColor[3].getBlue(), useColor[3].getAlpha());
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(destRect.LowerRightCorner.X), GLfloat(destRect.UpperLeftCorner.Y));
glColor4ub(useColor[2].getRed(), useColor[2].getGreen(), useColor[2].getBlue(), useColor[2].getAlpha());
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(destRect.LowerRightCorner.X), GLfloat(destRect.LowerRightCorner.Y));
glColor4ub(useColor[1].getRed(), useColor[1].getGreen(), useColor[1].getBlue(), useColor[1].getAlpha());
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(destRect.UpperLeftCorner.X), GLfloat(destRect.LowerRightCorner.Y));
glEnd();
if (clipRect)
glDisable(GL_SCISSOR_TEST);
}
//! draws a set of 2d images, using a color and the alpha channel of the
//! texture if desired. The images are drawn beginning at pos and concatenated
//! in one line. All drawings are clipped against clipRect (if != 0).
//! The subtextures are defined by the array of sourceRects and are chosen
//! by the indices given.
void COpenGLDriver::draw2DImage(const video::ITexture* texture,
const core::position2d<s32>& pos,
const core::array<core::rect<s32> >& sourceRects,
const core::array<s32>& indices,
const core::rect<s32>* clipRect, SColor color,
bool useAlphaChannelOfTexture)
{
if (!texture)
return;
disableTextures(1);
if (!setActiveTexture(0, texture))
return;
setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture);
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
if (clipRect)
{
if (!clipRect->isValid())
return;
glEnable(GL_SCISSOR_TEST);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height-clipRect->LowerRightCorner.Y,
clipRect->getWidth(),clipRect->getHeight());
}
const core::dimension2d<u32>& ss = texture->getOriginalSize();
core::position2d<s32> targetPos(pos);
// texcoords need to be flipped horizontally for RTTs
const bool isRTT = texture->isRenderTarget();
const f32 invW = 1.f / static_cast<f32>(ss.Width);
const f32 invH = 1.f / static_cast<f32>(ss.Height);
for (u32 i=0; i<indices.size(); ++i)
{
const s32 currentIndex = indices[i];
if (!sourceRects[currentIndex].isValid())
break;
const core::rect<f32> tcoords(
sourceRects[currentIndex].UpperLeftCorner.X * invW,
(isRTT?sourceRects[currentIndex].LowerRightCorner.Y:sourceRects[currentIndex].UpperLeftCorner.Y) * invH,
sourceRects[currentIndex].LowerRightCorner.X * invW,
(isRTT?sourceRects[currentIndex].UpperLeftCorner.Y:sourceRects[currentIndex].LowerRightCorner.Y) * invH);
const core::rect<s32> poss(targetPos, sourceRects[currentIndex].getSize());
glBegin(GL_QUADS);
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.UpperLeftCorner.Y));
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y);
glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.UpperLeftCorner.Y));
glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.LowerRightCorner.Y));
glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y);
glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.LowerRightCorner.Y));
glEnd();
targetPos.X += sourceRects[currentIndex].getWidth();
}
if (clipRect)
glDisable(GL_SCISSOR_TEST);
}
//! draw a 2d rectangle
void COpenGLDriver::draw2DRectangle(SColor color, const core::rect<s32>& position,
const core::rect<s32>* clip)
{
disableTextures();
setRenderStates2DMode(color.getAlpha() < 255, false, false);
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
glRectf(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.UpperLeftCorner.Y),
GLfloat(pos.LowerRightCorner.X), GLfloat(pos.LowerRightCorner.Y));
}
//! draw an 2d rectangle
void COpenGLDriver::draw2DRectangle(const core::rect<s32>& position,
SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown,
const core::rect<s32>* clip)
{
core::rect<s32> pos = position;
if (clip)
pos.clipAgainst(*clip);
if (!pos.isValid())
return;
disableTextures();
setRenderStates2DMode(colorLeftUp.getAlpha() < 255 ||
colorRightUp.getAlpha() < 255 ||
colorLeftDown.getAlpha() < 255 ||
colorRightDown.getAlpha() < 255, false, false);
glBegin(GL_QUADS);
glColor4ub(colorLeftUp.getRed(), colorLeftUp.getGreen(),
colorLeftUp.getBlue(), colorLeftUp.getAlpha());
glVertex2f(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.UpperLeftCorner.Y));
glColor4ub(colorRightUp.getRed(), colorRightUp.getGreen(),
colorRightUp.getBlue(), colorRightUp.getAlpha());
glVertex2f(GLfloat(pos.LowerRightCorner.X), GLfloat(pos.UpperLeftCorner.Y));
glColor4ub(colorRightDown.getRed(), colorRightDown.getGreen(),
colorRightDown.getBlue(), colorRightDown.getAlpha());
glVertex2f(GLfloat(pos.LowerRightCorner.X), GLfloat(pos.LowerRightCorner.Y));
glColor4ub(colorLeftDown.getRed(), colorLeftDown.getGreen(),
colorLeftDown.getBlue(), colorLeftDown.getAlpha());
glVertex2f(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.LowerRightCorner.Y));
glEnd();
}
//! Draws a 2d line.
void COpenGLDriver::draw2DLine(const core::position2d<s32>& start,
const core::position2d<s32>& end,
SColor color)
{
disableTextures();
setRenderStates2DMode(color.getAlpha() < 255, false, false);
glBegin(GL_LINES);
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
glVertex2f(GLfloat(start.X), GLfloat(start.Y));
glVertex2f(GLfloat(end.X), GLfloat(end.Y));
glEnd();
}
//! Draws a pixel
void COpenGLDriver::drawPixel(u32 x, u32 y, const SColor &color)
{
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
if (x > (u32)renderTargetSize.Width || y > (u32)renderTargetSize.Height)
return;
disableTextures();
setRenderStates2DMode(color.getAlpha() < 255, false, false);
glBegin(GL_POINTS);
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
glVertex2i(x, y);
glEnd();
}
bool COpenGLDriver::setActiveTexture(u32 stage, const video::ITexture* texture)
{
if (stage >= MaxTextureUnits)
return false;
if (CurrentTexture[stage]==texture)
return true;
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB + stage);
CurrentTexture[stage]=texture;
if (!texture)
{
glDisable(GL_TEXTURE_2D);
return true;
}
else
{
if (texture->getDriverType() != EDT_OPENGL)
{
glDisable(GL_TEXTURE_2D);
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,
static_cast<const COpenGLTexture*>(texture)->getOpenGLTextureName());
}
return true;
}
//! disables all textures beginning with the optional fromStage parameter. Otherwise all texture stages are disabled.
//! Returns whether disabling was successful or not.
bool COpenGLDriver::disableTextures(u32 fromStage)
{
bool result=true;
for (u32 i=fromStage; i<MaxTextureUnits; ++i)
result &= setActiveTexture(i, 0);
return result;
}
//! creates a matrix in supplied GLfloat array to pass to OpenGL
inline void COpenGLDriver::createGLMatrix(GLfloat gl_matrix[16], const core::matrix4& m)
{
memcpy(gl_matrix, m.pointer(), 16 * sizeof(f32));
}
//! creates a opengltexturematrix from a D3D style texture matrix
inline void COpenGLDriver::createGLTextureMatrix(GLfloat *o, const core::matrix4& m)
{
o[0] = m[0];
o[1] = m[1];
o[2] = 0.f;
o[3] = 0.f;
o[4] = m[4];
o[5] = m[5];
o[6] = 0.f;
o[7] = 0.f;
o[8] = 0.f;
o[9] = 0.f;
o[10] = 1.f;
o[11] = 0.f;
o[12] = m[8];
o[13] = m[9];
o[14] = 0.f;
o[15] = 1.f;
}
//! returns a device dependent texture from a software surface (IImage)
video::ITexture* COpenGLDriver::createDeviceDependentTexture(IImage* surface, const io::path& name, void* mipmapData)
{
return new COpenGLTexture(surface, name, mipmapData, this);
}
//! Sets a material. All 3d drawing functions draw geometry now using this material.
void COpenGLDriver::setMaterial(const SMaterial& material)
{
Material = material;
OverrideMaterial.apply(Material);
for (s32 i = MaxTextureUnits-1; i>= 0; --i)
{
setActiveTexture(i, material.getTexture(i));
setTransform ((E_TRANSFORMATION_STATE) (ETS_TEXTURE_0 + i),
Material.getTextureMatrix(i));
}
}
//! prints error if an error happened.
bool COpenGLDriver::testGLError()
{
#ifdef _DEBUG
GLenum g = glGetError();
switch (g)
{
case GL_NO_ERROR:
return false;
case GL_INVALID_ENUM:
os::Printer::log("GL_INVALID_ENUM", ELL_ERROR); break;
case GL_INVALID_VALUE:
os::Printer::log("GL_INVALID_VALUE", ELL_ERROR); break;
case GL_INVALID_OPERATION:
os::Printer::log("GL_INVALID_OPERATION", ELL_ERROR); break;
case GL_STACK_OVERFLOW:
os::Printer::log("GL_STACK_OVERFLOW", ELL_ERROR); break;
case GL_STACK_UNDERFLOW:
os::Printer::log("GL_STACK_UNDERFLOW", ELL_ERROR); break;
case GL_OUT_OF_MEMORY:
os::Printer::log("GL_OUT_OF_MEMORY", ELL_ERROR); break;
case GL_TABLE_TOO_LARGE:
os::Printer::log("GL_TABLE_TOO_LARGE", ELL_ERROR); break;
#if defined(GL_EXT_framebuffer_object)
case GL_INVALID_FRAMEBUFFER_OPERATION_EXT:
os::Printer::log("GL_INVALID_FRAMEBUFFER_OPERATION", ELL_ERROR); break;
#endif
};
return true;
#else
return false;
#endif
}
//! sets the needed renderstates
void COpenGLDriver::setRenderStates3DMode()
{
if (CurrentRenderMode != ERM_3D)
{
// Reset Texture Stages
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_COLOR);
// switch back the matrices
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer());
GLfloat glmat[16];
createGLMatrix(glmat, Matrices[ETS_PROJECTION]);
glmat[12] *= -1.0f;
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(glmat);
ResetRenderStates = true;
}
if (ResetRenderStates || LastMaterial != Material)
{
// unset old material
if (LastMaterial.MaterialType != Material.MaterialType &&
static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
// set new material.
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial(
Material, LastMaterial, ResetRenderStates, this);
LastMaterial = Material;
ResetRenderStates = false;
}
if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD);
CurrentRenderMode = ERM_3D;
}
//! Get native wrap mode value
GLint COpenGLDriver::getTextureWrapMode(const u8 clamp)
{
GLint mode=GL_REPEAT;
switch (clamp)
{
case ETC_REPEAT:
mode=GL_REPEAT;
break;
case ETC_CLAMP:
mode=GL_CLAMP;
break;
case ETC_CLAMP_TO_EDGE:
#ifdef GL_VERSION_1_2
if (Version>101)
mode=GL_CLAMP_TO_EDGE;
else
#endif
#ifdef GL_SGIS_texture_edge_clamp
if (FeatureAvailable[IRR_SGIS_texture_edge_clamp])
mode=GL_CLAMP_TO_EDGE_SGIS;
else
#endif
// fallback
mode=GL_CLAMP;
break;
case ETC_CLAMP_TO_BORDER:
#ifdef GL_VERSION_1_3
if (Version>102)
mode=GL_CLAMP_TO_BORDER;
else
#endif
#ifdef GL_ARB_texture_border_clamp
if (FeatureAvailable[IRR_ARB_texture_border_clamp])
mode=GL_CLAMP_TO_BORDER_ARB;
else
#endif
#ifdef GL_SGIS_texture_border_clamp
if (FeatureAvailable[IRR_SGIS_texture_border_clamp])
mode=GL_CLAMP_TO_BORDER_SGIS;
else
#endif
// fallback
mode=GL_CLAMP;
break;
case ETC_MIRROR:
#ifdef GL_VERSION_1_4
if (Version>103)
mode=GL_MIRRORED_REPEAT;
else
#endif
#ifdef GL_ARB_texture_border_clamp
if (FeatureAvailable[IRR_ARB_texture_mirrored_repeat])
mode=GL_MIRRORED_REPEAT_ARB;
else
#endif
#ifdef GL_IBM_texture_mirrored_repeat
if (FeatureAvailable[IRR_IBM_texture_mirrored_repeat])
mode=GL_MIRRORED_REPEAT_IBM;
else
#endif
mode=GL_REPEAT;
break;
case ETC_MIRROR_CLAMP:
#ifdef GL_EXT_texture_mirror_clamp
if (FeatureAvailable[IRR_EXT_texture_mirror_clamp])
mode=GL_MIRROR_CLAMP_EXT;
else
#endif
#if defined(GL_ATI_texture_mirror_once)
if (FeatureAvailable[IRR_ATI_texture_mirror_once])
mode=GL_MIRROR_CLAMP_ATI;
else
#endif
mode=GL_CLAMP;
break;
case ETC_MIRROR_CLAMP_TO_EDGE:
#ifdef GL_EXT_texture_mirror_clamp
if (FeatureAvailable[IRR_EXT_texture_mirror_clamp])
mode=GL_MIRROR_CLAMP_TO_EDGE_EXT;
else
#endif
#if defined(GL_ATI_texture_mirror_once)
if (FeatureAvailable[IRR_ATI_texture_mirror_once])
mode=GL_MIRROR_CLAMP_TO_EDGE_ATI;
else
#endif
mode=GL_CLAMP;
break;
case ETC_MIRROR_CLAMP_TO_BORDER:
#ifdef GL_EXT_texture_mirror_clamp
if (FeatureAvailable[IRR_EXT_texture_mirror_clamp])
mode=GL_MIRROR_CLAMP_TO_BORDER_EXT;
else
#endif
mode=GL_CLAMP;
break;
}
return mode;
}
void COpenGLDriver::setWrapMode(const SMaterial& material)
{
// texture address mode
// Has to be checked always because it depends on the textures
for (u32 u=0; u<MaxTextureUnits; ++u)
{
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB + u);
else if (u>0)
break; // stop loop
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, getTextureWrapMode(material.TextureLayer[u].TextureWrapU));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, getTextureWrapMode(material.TextureLayer[u].TextureWrapV));
}
}
//! Can be called by an IMaterialRenderer to make its work easier.
void COpenGLDriver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial,
bool resetAllRenderStates)
{
if (resetAllRenderStates ||
lastmaterial.ColorMaterial != material.ColorMaterial)
{
if (material.ColorMaterial != ECM_NONE)
glEnable(GL_COLOR_MATERIAL);
switch (material.ColorMaterial)
{
case ECM_NONE:
glDisable(GL_COLOR_MATERIAL);
break;
case ECM_DIFFUSE:
glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE);
break;
case ECM_AMBIENT:
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT);
break;
case ECM_EMISSIVE:
glColorMaterial(GL_FRONT_AND_BACK, GL_EMISSION);
break;
case ECM_SPECULAR:
glColorMaterial(GL_FRONT_AND_BACK, GL_SPECULAR);
break;
case ECM_DIFFUSE_AND_AMBIENT:
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
break;
}
}
if (resetAllRenderStates ||
lastmaterial.AmbientColor != material.AmbientColor ||
lastmaterial.DiffuseColor != material.DiffuseColor ||
lastmaterial.EmissiveColor != material.EmissiveColor ||
lastmaterial.ColorMaterial != material.ColorMaterial)
{
GLfloat color[4];
const f32 inv = 1.0f / 255.0f;
if ((material.ColorMaterial != video::ECM_AMBIENT) &&
(material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT))
{
color[0] = material.AmbientColor.getRed() * inv;
color[1] = material.AmbientColor.getGreen() * inv;
color[2] = material.AmbientColor.getBlue() * inv;
color[3] = material.AmbientColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, color);
}
if ((material.ColorMaterial != video::ECM_DIFFUSE) &&
(material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT))
{
color[0] = material.DiffuseColor.getRed() * inv;
color[1] = material.DiffuseColor.getGreen() * inv;
color[2] = material.DiffuseColor.getBlue() * inv;
color[3] = material.DiffuseColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, color);
}
if (material.ColorMaterial != video::ECM_EMISSIVE)
{
color[0] = material.EmissiveColor.getRed() * inv;
color[1] = material.EmissiveColor.getGreen() * inv;
color[2] = material.EmissiveColor.getBlue() * inv;
color[3] = material.EmissiveColor.getAlpha() * inv;
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, color);
}
}
if (resetAllRenderStates ||
lastmaterial.SpecularColor != material.SpecularColor ||
lastmaterial.Shininess != material.Shininess ||
lastmaterial.ColorMaterial != material.ColorMaterial)
{
GLfloat color[4]={0.f,0.f,0.f,1.f};
const f32 inv = 1.0f / 255.0f;
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, material.Shininess);
// disable Specular colors if no shininess is set
if ((material.Shininess != 0.0f) &&
(material.ColorMaterial != video::ECM_SPECULAR))
{
#ifdef GL_EXT_separate_specular_color
if (FeatureAvailable[IRR_EXT_separate_specular_color])
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
#endif
color[0] = material.SpecularColor.getRed() * inv;
color[1] = material.SpecularColor.getGreen() * inv;
color[2] = material.SpecularColor.getBlue() * inv;
color[3] = material.SpecularColor.getAlpha() * inv;
}
#ifdef GL_EXT_separate_specular_color
else if (FeatureAvailable[IRR_EXT_separate_specular_color])
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR);
#endif
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, color);
}
// Texture filter
// Has to be checked always because it depends on the textures
// Filtering has to be set for each texture layer
for (u32 i=0; i<MaxTextureUnits; ++i)
{
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB + i);
else if (i>0)
break;
#ifdef GL_EXT_texture_lod_bias
if (FeatureAvailable[IRR_EXT_texture_lod_bias])
{
if (material.TextureLayer[i].LODBias)
{
const float tmp = core::clamp(material.TextureLayer[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias);
glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, tmp);
}
else
glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, 0.f);
}
#endif
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
(material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST);
if (material.getTexture(i) && material.getTexture(i)->hasMipMaps())
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
material.TextureLayer[i].TrilinearFilter ? GL_LINEAR_MIPMAP_LINEAR :
material.TextureLayer[i].BilinearFilter ? GL_LINEAR_MIPMAP_NEAREST :
GL_NEAREST_MIPMAP_NEAREST);
else
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
(material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST);
#ifdef GL_EXT_texture_filter_anisotropic
if (FeatureAvailable[IRR_EXT_texture_filter_anisotropic])
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
material.TextureLayer[i].AnisotropicFilter>1 ? core::min_(MaxAnisotropy, material.TextureLayer[i].AnisotropicFilter) : 1);
#endif
}
// fillmode
if (resetAllRenderStates || (lastmaterial.Wireframe != material.Wireframe) || (lastmaterial.PointCloud != material.PointCloud))
glPolygonMode(GL_FRONT_AND_BACK, material.Wireframe ? GL_LINE : material.PointCloud? GL_POINT : GL_FILL);
// shademode
if (resetAllRenderStates || (lastmaterial.GouraudShading != material.GouraudShading))
{
if (material.GouraudShading)
glShadeModel(GL_SMOOTH);
else
glShadeModel(GL_FLAT);
}
// lighting
if (resetAllRenderStates || (lastmaterial.Lighting != material.Lighting))
{
if (material.Lighting)
glEnable(GL_LIGHTING);
else
glDisable(GL_LIGHTING);
}
// zbuffer
if (resetAllRenderStates || lastmaterial.ZBuffer != material.ZBuffer)
{
switch (material.ZBuffer)
{
case ECFN_NEVER:
glDisable(GL_DEPTH_TEST);
break;
case ECFN_LESSEQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
break;
case ECFN_EQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_EQUAL);
break;
case ECFN_LESS:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
break;
case ECFN_NOTEQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_NOTEQUAL);
break;
case ECFN_GREATEREQUAL:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_GEQUAL);
break;
case ECFN_GREATER:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_GREATER);
break;
case ECFN_ALWAYS:
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_ALWAYS);
break;
}
}
// zwrite
// if (resetAllRenderStates || lastmaterial.ZWriteEnable != material.ZWriteEnable)
{
if (material.ZWriteEnable && (AllowZWriteOnTransparent || !material.isTransparent()))
{
glDepthMask(GL_TRUE);
}
else
glDepthMask(GL_FALSE);
}
// back face culling
if (resetAllRenderStates || (lastmaterial.FrontfaceCulling != material.FrontfaceCulling) || (lastmaterial.BackfaceCulling != material.BackfaceCulling))
{
if ((material.FrontfaceCulling) && (material.BackfaceCulling))
{
glCullFace(GL_FRONT_AND_BACK);
glEnable(GL_CULL_FACE);
}
else
if (material.BackfaceCulling)
{
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
}
else
if (material.FrontfaceCulling)
{
glCullFace(GL_FRONT);
glEnable(GL_CULL_FACE);
}
else
glDisable(GL_CULL_FACE);
}
// fog
if (resetAllRenderStates || lastmaterial.FogEnable != material.FogEnable)
{
if (material.FogEnable)
glEnable(GL_FOG);
else
glDisable(GL_FOG);
}
// normalization
if (resetAllRenderStates || lastmaterial.NormalizeNormals != material.NormalizeNormals)
{
if (material.NormalizeNormals)
glEnable(GL_NORMALIZE);
else
glDisable(GL_NORMALIZE);
}
// Color Mask
if (resetAllRenderStates || lastmaterial.ColorMask != material.ColorMask)
{
glColorMask(
(material.ColorMask & ECP_RED)?GL_TRUE:GL_FALSE,
(material.ColorMask & ECP_GREEN)?GL_TRUE:GL_FALSE,
(material.ColorMask & ECP_BLUE)?GL_TRUE:GL_FALSE,
(material.ColorMask & ECP_ALPHA)?GL_TRUE:GL_FALSE);
}
// thickness
if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness)
{
if (AntiAlias)
{
// glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimSmoothedPoint[0], DimSmoothedPoint[1]));
// we don't use point smoothing
glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1]));
glLineWidth(core::clamp(static_cast<GLfloat>(material.Thickness), DimSmoothedLine[0], DimSmoothedLine[1]));
}
else
{
glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1]));
glLineWidth(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedLine[0], DimAliasedLine[1]));
}
}
// Anti aliasing
if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing)
{
if (FeatureAvailable[IRR_ARB_multisample])
{
if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB);
else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE)
glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB);
if ((AntiAlias >= 2) && (material.AntiAliasing & (EAAM_SIMPLE|EAAM_QUALITY)))
{
glEnable(GL_MULTISAMPLE_ARB);
#ifdef GL_NV_multisample_filter_hint
if (FeatureAvailable[IRR_NV_multisample_filter_hint])
{
if ((material.AntiAliasing & EAAM_QUALITY) == EAAM_QUALITY)
glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_NICEST);
else
glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_NICEST);
}
#endif
}
else
glDisable(GL_MULTISAMPLE_ARB);
}
if ((material.AntiAliasing & EAAM_LINE_SMOOTH) != (lastmaterial.AntiAliasing & EAAM_LINE_SMOOTH))
{
if (material.AntiAliasing & EAAM_LINE_SMOOTH)
glEnable(GL_LINE_SMOOTH);
else if (lastmaterial.AntiAliasing & EAAM_LINE_SMOOTH)
glDisable(GL_LINE_SMOOTH);
}
if ((material.AntiAliasing & EAAM_POINT_SMOOTH) != (lastmaterial.AntiAliasing & EAAM_POINT_SMOOTH))
{
if (material.AntiAliasing & EAAM_POINT_SMOOTH)
// often in software, and thus very slow
glEnable(GL_POINT_SMOOTH);
else if (lastmaterial.AntiAliasing & EAAM_POINT_SMOOTH)
glDisable(GL_POINT_SMOOTH);
}
}
setWrapMode(material);
// be sure to leave in texture stage 0
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB);
}
//! sets the needed renderstates
void COpenGLDriver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel)
{
if (CurrentRenderMode != ERM_2D || Transformation3DChanged)
{
// unset last 3d material
if (CurrentRenderMode == ERM_3D)
{
if (static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size())
MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial();
SMaterial mat;
mat.ZBuffer=ECFN_NEVER;
mat.Lighting=false;
mat.AntiAliasing=video::EAAM_OFF;
mat.TextureLayer[0].BilinearFilter=false;
setBasicRenderStates(mat, mat, true);
LastMaterial = mat;
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
glMatrixMode(GL_PROJECTION);
const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize();
core::matrix4 m;
m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0, 1.0);
m.setTranslation(core::vector3df(-1,1,0));
glLoadMatrixf(m.pointer());
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.375, 0.375, 0.0);
// Make sure we set first texture matrix
if (MultiTextureExtension)
extGlActiveTexture(GL_TEXTURE0_ARB);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
Transformation3DChanged = false;
}
if (alphaChannel || alpha)
{
glEnable(GL_BLEND);
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GREATER, 0.f);
}
else
{
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
}
if (texture)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
if (alphaChannel)
{
// if alpha and alpha texture just modulate, otherwise use only the alpha channel
if (alpha)
{
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
else
{
#ifdef GL_ARB_texture_env_combine
if (FeatureAvailable[IRR_ARB_texture_env_combine])
{
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE);
// rgb always modulates
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PRIMARY_COLOR_EXT);
}
else
#endif
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
}
else
{
if (alpha)
{
#ifdef GL_ARB_texture_env_combine
if (FeatureAvailable[IRR_ARB_texture_env_combine])
{
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_PRIMARY_COLOR_EXT);
// rgb always modulates
glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE);
glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PRIMARY_COLOR_EXT);
}
else
#endif
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
else
{
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
}
}
}
CurrentRenderMode = ERM_2D;
}
//! \return Returns the name of the video driver.
const wchar_t* COpenGLDriver::getName() const
{
return Name.c_str();
}
//! deletes all dynamic lights there are
void COpenGLDriver::deleteAllDynamicLights()
{
for (s32 i=0; i<MaxLights; ++i)
glDisable(GL_LIGHT0 + i);
RequestedLights.clear();
CNullDriver::deleteAllDynamicLights();
}
//! adds a dynamic light
s32 COpenGLDriver::addDynamicLight(const SLight& light)
{
CNullDriver::addDynamicLight(light);
RequestedLights.push_back(RequestedLight(light));
u32 newLightIndex = RequestedLights.size() - 1;
// Try and assign a hardware light just now, but don't worry if I can't
assignHardwareLight(newLightIndex);
return (s32)newLightIndex;
}
void COpenGLDriver::assignHardwareLight(u32 lightIndex)
{
setTransform(ETS_WORLD, core::matrix4());
s32 lidx;
for (lidx=GL_LIGHT0; lidx < GL_LIGHT0 + MaxLights; ++lidx)
{
if(!glIsEnabled(lidx))
{
RequestedLights[lightIndex].HardwareLightIndex = lidx;
break;
}
}
if(lidx == GL_LIGHT0 + MaxLights) // There's no room for it just now
return;
GLfloat data[4];
const SLight & light = RequestedLights[lightIndex].LightData;
switch (light.Type)
{
case video::ELT_SPOT:
data[0] = light.Direction.X;
data[1] = light.Direction.Y;
data[2] = light.Direction.Z;
data[3] = 0.0f;
glLightfv(lidx, GL_SPOT_DIRECTION, data);
// set position
data[0] = light.Position.X;
data[1] = light.Position.Y;
data[2] = light.Position.Z;
data[3] = 1.0f; // 1.0f for positional light
glLightfv(lidx, GL_POSITION, data);
glLightf(lidx, GL_SPOT_EXPONENT, light.Falloff);
glLightf(lidx, GL_SPOT_CUTOFF, light.OuterCone);
break;
case video::ELT_POINT:
// set position
data[0] = light.Position.X;
data[1] = light.Position.Y;
data[2] = light.Position.Z;
data[3] = 1.0f; // 1.0f for positional light
glLightfv(lidx, GL_POSITION, data);
glLightf(lidx, GL_SPOT_EXPONENT, 0.0f);
glLightf(lidx, GL_SPOT_CUTOFF, 180.0f);
break;
case video::ELT_DIRECTIONAL:
// set direction
data[0] = -light.Direction.X;
data[1] = -light.Direction.Y;
data[2] = -light.Direction.Z;
data[3] = 0.0f; // 0.0f for directional light
glLightfv(lidx, GL_POSITION, data);
glLightf(lidx, GL_SPOT_EXPONENT, 0.0f);
glLightf(lidx, GL_SPOT_CUTOFF, 180.0f);
break;
}
// set diffuse color
data[0] = light.DiffuseColor.r;
data[1] = light.DiffuseColor.g;
data[2] = light.DiffuseColor.b;
data[3] = light.DiffuseColor.a;
glLightfv(lidx, GL_DIFFUSE, data);
// set specular color
data[0] = light.SpecularColor.r;
data[1] = light.SpecularColor.g;
data[2] = light.SpecularColor.b;
data[3] = light.SpecularColor.a;
glLightfv(lidx, GL_SPECULAR, data);
// set ambient color
data[0] = light.AmbientColor.r;
data[1] = light.AmbientColor.g;
data[2] = light.AmbientColor.b;
data[3] = light.AmbientColor.a;
glLightfv(lidx, GL_AMBIENT, data);
// 1.0f / (constant + linear * d + quadratic*(d*d);
// set attenuation
glLightf(lidx, GL_CONSTANT_ATTENUATION, light.Attenuation.X);
glLightf(lidx, GL_LINEAR_ATTENUATION, light.Attenuation.Y);
glLightf(lidx, GL_QUADRATIC_ATTENUATION, light.Attenuation.Z);
glEnable(lidx);
}
//! Turns a dynamic light on or off
//! \param lightIndex: the index returned by addDynamicLight
//! \param turnOn: true to turn the light on, false to turn it off
void COpenGLDriver::turnLightOn(s32 lightIndex, bool turnOn)
{
if(lightIndex < 0 || lightIndex >= (s32)RequestedLights.size())
return;
RequestedLight & requestedLight = RequestedLights[lightIndex];
requestedLight.DesireToBeOn = turnOn;
if(turnOn)
{
if(-1 == requestedLight.HardwareLightIndex)
assignHardwareLight(lightIndex);
}
else
{
if(-1 != requestedLight.HardwareLightIndex)
{
// It's currently assigned, so free up the hardware light
glDisable(requestedLight.HardwareLightIndex);
requestedLight.HardwareLightIndex = -1;
// Now let the first light that's waiting on a free hardware light grab it
for(u32 requested = 0; requested < RequestedLights.size(); ++requested)
if(RequestedLights[requested].DesireToBeOn
&&
-1 == RequestedLights[requested].HardwareLightIndex)
{
assignHardwareLight(requested);
break;
}
}
}
}
//! returns the maximal amount of dynamic lights the device can handle
u32 COpenGLDriver::getMaximalDynamicLightAmount() const
{
return MaxLights;
}
//! Sets the dynamic ambient light color. The default color is
//! (0,0,0,0) which means it is dark.
//! \param color: New color of the ambient light.
void COpenGLDriver::setAmbientLight(const SColorf& color)
{
GLfloat data[4] = {color.r, color.g, color.b, color.a};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, data);
}
// this code was sent in by Oliver Klems, thank you! (I modified the glViewport
// method just a bit.
void COpenGLDriver::setViewPort(const core::rect<s32>& area)
{
core::rect<s32> vp = area;
core::rect<s32> rendert(0,0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height);
vp.clipAgainst(rendert);
if (vp.getHeight()>0 && vp.getWidth()>0)
glViewport(vp.UpperLeftCorner.X,
getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(),
vp.getWidth(), vp.getHeight());
ViewPort = vp;
}
//! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do
//! this: First, draw all geometry. Then use this method, to draw the shadow
//! volume. Next use IVideoDriver::drawStencilShadow() to visualize the shadow.
void COpenGLDriver::drawStencilShadowVolume(const core::vector3df* triangles, s32 count, bool zfail)
{
if (!StencilBuffer || !count)
return;
// unset last 3d material
if (CurrentRenderMode == ERM_3D &&
static_cast<u32>(Material.MaterialType) < MaterialRenderers.size())
{
MaterialRenderers[Material.MaterialType].Renderer->OnUnsetMaterial();
ResetRenderStates = true;
}
// store current OpenGL state
glPushAttrib(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_ENABLE_BIT |
GL_POLYGON_BIT | GL_STENCIL_BUFFER_BIT);
glDisable(GL_LIGHTING);
glDisable(GL_FOG);
glDepthFunc(GL_LEQUAL);
glDepthMask(GL_FALSE); // no depth buffer writing
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); // no color buffer drawing
glEnable(GL_STENCIL_TEST);
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(0.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3,GL_FLOAT,sizeof(core::vector3df),&triangles[0]);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
GLenum incr = GL_INCR;
GLenum decr = GL_DECR;
#ifdef GL_EXT_stencil_wrap
if (FeatureAvailable[IRR_EXT_stencil_wrap])
{
incr = GL_INCR_WRAP_EXT;
decr = GL_DECR_WRAP_EXT;
}
#endif
// The first parts are not correctly working, yet.
#if 0
#ifdef GL_EXT_stencil_two_side
if (FeatureAvailable[IRR_EXT_stencil_two_side])
{
glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);
#ifdef GL_NV_depth_clamp
if (FeatureAvailable[IRR_NV_depth_clamp])
glEnable(GL_DEPTH_CLAMP_NV);
#endif
glDisable(GL_CULL_FACE);
if (!zfail)
{
// ZPASS Method
extGlActiveStencilFace(GL_BACK);
glStencilOp(GL_KEEP, GL_KEEP, decr);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
extGlActiveStencilFace(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, incr);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
glDrawArrays(GL_TRIANGLES,0,count);
}
else
{
// ZFAIL Method
extGlActiveStencilFace(GL_BACK);
glStencilOp(GL_KEEP, incr, GL_KEEP);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
extGlActiveStencilFace(GL_FRONT);
glStencilOp(GL_KEEP, decr, GL_KEEP);
glStencilMask(~0);
glStencilFunc(GL_ALWAYS, 0, ~0);
glDrawArrays(GL_TRIANGLES,0,count);
}
}
else
#endif
if (FeatureAvailable[IRR_ATI_separate_stencil])
{
glDisable(GL_CULL_FACE);
if (!zfail)
{
// ZPASS Method
extGlStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, decr);
extGlStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, incr);
extGlStencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS, 0, ~0);
glStencilMask(~0);
glDrawArrays(GL_TRIANGLES,0,count);
}
else
{
// ZFAIL Method
extGlStencilOpSeparate(GL_BACK, GL_KEEP, incr, GL_KEEP);
extGlStencilOpSeparate(GL_FRONT, GL_KEEP, decr, GL_KEEP);
extGlStencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS, 0, ~0);
glDrawArrays(GL_TRIANGLES,0,count);
}
}
else
#endif
{
glEnable(GL_CULL_FACE);
if (!zfail)
{
// ZPASS Method
glCullFace(GL_BACK);
glStencilOp(GL_KEEP, GL_KEEP, incr);
glDrawArrays(GL_TRIANGLES,0,count);
glCullFace(GL_FRONT);
glStencilOp(GL_KEEP, GL_KEEP, decr);
glDrawArrays(GL_TRIANGLES,0,count);
}
else
{
// ZFAIL Method
glStencilOp(GL_KEEP, incr, GL_KEEP);
glCullFace(GL_FRONT);
glDrawArrays(GL_TRIANGLES,0,count);
glStencilOp(GL_KEEP, decr, GL_KEEP);
glCullFace(GL_BACK);
glDrawArrays(GL_TRIANGLES,0,count);
}
}
glDisableClientState(GL_VERTEX_ARRAY); //not stored on stack
glPopAttrib();
}
void COpenGLDriver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge,
video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge)
{
if (!StencilBuffer)
return;
disableTextures();
// store attributes
glPushAttrib(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_ENABLE_BIT | GL_POLYGON_BIT | GL_STENCIL_BUFFER_BIT);
glDisable(GL_LIGHTING);
glDisable(GL_FOG);
glDepthMask(GL_FALSE);
glShadeModel(GL_FLAT);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_NOTEQUAL, 0, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
// draw a shadow rectangle covering the entire screen using stencil buffer
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glBegin(GL_QUADS);
glColor4ub(leftDownEdge.getRed(), leftDownEdge.getGreen(), leftDownEdge.getBlue(), leftDownEdge.getAlpha());
glVertex3f(-1.f,-1.f,-0.9f);
glColor4ub(leftUpEdge.getRed(), leftUpEdge.getGreen(), leftUpEdge.getBlue(), leftUpEdge.getAlpha());
glVertex3f(-1.f, 1.f,-0.9f);
glColor4ub(rightUpEdge.getRed(), rightUpEdge.getGreen(), rightUpEdge.getBlue(), rightUpEdge.getAlpha());
glVertex3f(1.f, 1.f,-0.9f);
glColor4ub(rightDownEdge.getRed(), rightDownEdge.getGreen(), rightDownEdge.getBlue(), rightDownEdge.getAlpha());
glVertex3f(1.f,-1.f,-0.9f);
glEnd();
clearBuffers(false, false, clearStencilBuffer, 0x0);
// restore settings
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glPopAttrib();
}
//! Sets the fog mode.
void COpenGLDriver::setFog(SColor c, E_FOG_TYPE fogType, f32 start,
f32 end, f32 density, bool pixelFog, bool rangeFog)
{
CNullDriver::setFog(c, fogType, start, end, density, pixelFog, rangeFog);
glFogf(GL_FOG_MODE, GLfloat((fogType==EFT_FOG_LINEAR)? GL_LINEAR : (fogType==EFT_FOG_EXP)?GL_EXP:GL_EXP2));
#ifdef GL_EXT_fog_coord
if (FeatureAvailable[IRR_EXT_fog_coord])
glFogi(GL_FOG_COORDINATE_SOURCE, GL_FRAGMENT_DEPTH);
#endif
#ifdef GL_NV_fog_distance
if (FeatureAvailable[IRR_NV_fog_distance])
{
if (rangeFog)
glFogi(GL_FOG_DISTANCE_MODE_NV, GL_EYE_RADIAL_NV);
else
glFogi(GL_FOG_DISTANCE_MODE_NV, GL_EYE_PLANE_ABSOLUTE_NV);
}
#endif
if (fogType==EFT_FOG_LINEAR)
{
glFogf(GL_FOG_START, start);
glFogf(GL_FOG_END, end);
}
else
glFogf(GL_FOG_DENSITY, density);
if (pixelFog)
glHint(GL_FOG_HINT, GL_NICEST);
else
glHint(GL_FOG_HINT, GL_FASTEST);
SColorf color(c);
GLfloat data[4] = {color.r, color.g, color.b, color.a};
glFogfv(GL_FOG_COLOR, data);
}
//! Draws a 3d line.
void COpenGLDriver::draw3DLine(const core::vector3df& start,
const core::vector3df& end, SColor color)
{
setRenderStates3DMode();
glBegin(GL_LINES);
glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha());
glVertex3f(start.X, start.Y, start.Z);
glVertex3f(end.X, end.Y, end.Z);
glEnd();
}
//! Only used by the internal engine. Used to notify the driver that
//! the window was resized.
void COpenGLDriver::OnResize(const core::dimension2d<u32>& size)
{
CNullDriver::OnResize(size);
glViewport(0, 0, size.Width, size.Height);
Transformation3DChanged = true;
}
//! Returns type of video driver
E_DRIVER_TYPE COpenGLDriver::getDriverType() const
{
return EDT_OPENGL;
}
//! returns color format
ECOLOR_FORMAT COpenGLDriver::getColorFormat() const
{
return ColorFormat;
}
//! Sets a vertex shader constant.
void COpenGLDriver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
#ifdef GL_ARB_vertex_program
for (s32 i=0; i<constantAmount; ++i)
extGlProgramLocalParameter4fv(GL_VERTEX_PROGRAM_ARB, startRegister+i, &data[i*4]);
#endif
}
//! Sets a pixel shader constant.
void COpenGLDriver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount)
{
#ifdef GL_ARB_fragment_program
for (s32 i=0; i<constantAmount; ++i)
extGlProgramLocalParameter4fv(GL_FRAGMENT_PROGRAM_ARB, startRegister+i, &data[i*4]);
#endif
}
//! Sets a constant for the vertex shader based on a name.
bool COpenGLDriver::setVertexShaderConstant(const c8* name, const f32* floats, int count)
{
//pass this along, as in GLSL the same routine is used for both vertex and fragment shaders
return setPixelShaderConstant(name, floats, count);
}
//! Sets a constant for the pixel shader based on a name.
bool COpenGLDriver::setPixelShaderConstant(const c8* name, const f32* floats, int count)
{
os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant().");
return false;
}
//! Adds a new material renderer to the VideoDriver, using pixel and/or
//! vertex shaders to render geometry.
s32 COpenGLDriver::addShaderMaterial(const c8* vertexShaderProgram,
const c8* pixelShaderProgram,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial, s32 userData)
{
s32 nr = -1;
COpenGLShaderMaterialRenderer* r = new COpenGLShaderMaterialRenderer(
this, nr, vertexShaderProgram, pixelShaderProgram,
callback, getMaterialRenderer(baseMaterial), userData);
r->drop();
return nr;
}
//! Adds a new material renderer to the VideoDriver, using GLSL to render geometry.
s32 COpenGLDriver::addHighLevelShaderMaterial(
const c8* vertexShaderProgram,
const c8* vertexShaderEntryPointName,
E_VERTEX_SHADER_TYPE vsCompileTarget,
const c8* pixelShaderProgram,
const c8* pixelShaderEntryPointName,
E_PIXEL_SHADER_TYPE psCompileTarget,
const c8* geometryShaderProgram,
const c8* geometryShaderEntryPointName,
E_GEOMETRY_SHADER_TYPE gsCompileTarget,
IShaderConstantSetCallBack* callback,
E_MATERIAL_TYPE baseMaterial,
s32 userData)
{
s32 nr = -1;
COpenGLSLMaterialRenderer* r = new COpenGLSLMaterialRenderer(
this, nr,
vertexShaderProgram, vertexShaderEntryPointName, vsCompileTarget,
pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget,
geometryShaderProgram, geometryShaderEntryPointName, gsCompileTarget,
callback,getMaterialRenderer(baseMaterial), userData);
r->drop();
return nr;
}
//! Returns a pointer to the IVideoDriver interface. (Implementation for
//! IMaterialRendererServices)
IVideoDriver* COpenGLDriver::getVideoDriver()
{
return this;
}
ITexture* COpenGLDriver::addRenderTargetTexture(const core::dimension2d<u32>& size,
const io::path& name,
const ECOLOR_FORMAT format)
{
//disable mip-mapping
bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS);
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false);
video::ITexture* rtt = 0;
#if defined(GL_EXT_framebuffer_object)
// if driver supports FrameBufferObjects, use them
if (queryFeature(EVDF_FRAMEBUFFER_OBJECT))
{
rtt = new COpenGLFBOTexture(size, name, this, format);
if (rtt)
{
bool success = false;
addTexture(rtt);
ITexture* tex = createDepthTexture(rtt);
if (tex)
{
success = static_cast<video::COpenGLFBODepthTexture*>(tex)->attach(rtt);
tex->drop();
}
rtt->drop();
if (!success)
{
removeTexture(rtt);
rtt=0;
}
}
}
else
#endif
{
// the simple texture is only possible for size <= screensize
// we try to find an optimal size with the original constraints
core::dimension2du destSize(core::min_(size.Width,ScreenSize.Width), core::min_(size.Height,ScreenSize.Height));
destSize = destSize.getOptimalSize((size==size.getOptimalSize()), false, false);
rtt = addTexture(destSize, name, ECF_A8R8G8B8);
if (rtt)
{
static_cast<video::COpenGLTexture*>(rtt)->setIsRenderTarget(true);
}
}
//restore mip-mapping
setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels);
return rtt;
}
//! Returns the maximum amount of primitives (mostly vertices) which
//! the device is able to render with one drawIndexedTriangleList
//! call.
u32 COpenGLDriver::getMaximalPrimitiveCount() const
{
return 0x7fffffff;
}
//! set or reset render target
bool COpenGLDriver::setRenderTarget(video::E_RENDER_TARGET target, bool clearTarget,
bool clearZBuffer, SColor color)
{
if (target != CurrentTarget)
setRenderTarget(0, false, false, 0x0);
if (ERT_RENDER_TEXTURE == target)
{
os::Printer::log("Fatal Error: For render textures call setRenderTarget with the actual texture as first parameter.", ELL_ERROR);
return false;
}
if (Stereo && (ERT_STEREO_RIGHT_BUFFER == target))
{
if (Doublebuffer)
glDrawBuffer(GL_BACK_RIGHT);
else
glDrawBuffer(GL_FRONT_RIGHT);
}
else if (Stereo && ERT_STEREO_BOTH_BUFFERS == target)
{
if (Doublebuffer)
glDrawBuffer(GL_BACK);
else
glDrawBuffer(GL_FRONT);
}
else if ((target >= ERT_AUX_BUFFER0) && (target-ERT_AUX_BUFFER0 < MaxAuxBuffers))
{
glDrawBuffer(GL_AUX0+target-ERT_AUX_BUFFER0);
}
else
{
if (Doublebuffer)
glDrawBuffer(GL_BACK_LEFT);
else
glDrawBuffer(GL_FRONT_LEFT);
// exit with false, but also with working color buffer
if (target != ERT_FRAME_BUFFER)
return false;
}
CurrentTarget=target;
clearBuffers(clearTarget, clearZBuffer, false, color);
return true;
}
//! set or reset render target
bool COpenGLDriver::setRenderTarget(video::ITexture* texture, bool clearBackBuffer,
bool clearZBuffer, SColor color)
{
// check for right driver type
if (texture && texture->getDriverType() != EDT_OPENGL)
{
os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR);
return false;
}
// check if we should set the previous RT back
setActiveTexture(0, 0);
ResetRenderStates=true;
if (RenderTargetTexture!=0)
{
RenderTargetTexture->unbindRTT();
}
if (texture)
{
// we want to set a new target. so do this.
glViewport(0, 0, texture->getSize().Width, texture->getSize().Height);
RenderTargetTexture = static_cast<COpenGLTexture*>(texture);
RenderTargetTexture->bindRTT();
CurrentRendertargetSize = texture->getSize();
CurrentTarget=ERT_RENDER_TEXTURE;
}
else
{
glViewport(0,0,ScreenSize.Width,ScreenSize.Height);
RenderTargetTexture = 0;
CurrentRendertargetSize = core::dimension2d<u32>(0,0);
CurrentTarget=ERT_FRAME_BUFFER;
glDrawBuffer(Doublebuffer?GL_BACK_LEFT:GL_FRONT_LEFT);
}
clearBuffers(clearBackBuffer, clearZBuffer, false, color);
return true;
}
//! Sets multiple render targets
bool COpenGLDriver::setRenderTarget(const core::array<video::IRenderTarget>& targets,
bool clearBackBuffer, bool clearZBuffer, SColor color)
{
if (targets.size()==0)
return setRenderTarget(0, clearBackBuffer, clearZBuffer, color);
u32 maxMultipleRTTs = core::min_(static_cast<u32>(MaxMultipleRenderTargets), targets.size());
// determine common size
core::dimension2du rttSize = CurrentRendertargetSize;
if (targets[0].TargetType==ERT_RENDER_TEXTURE)
{
if (!targets[0].RenderTexture)
{
os::Printer::log("Missing render texture for MRT.", ELL_ERROR);
return false;
}
rttSize=targets[0].RenderTexture->getSize();
}
for (u32 i = 0; i < maxMultipleRTTs; ++i)
{
// check for right driver type
if (targets[i].TargetType==ERT_RENDER_TEXTURE)
{
if (!targets[i].RenderTexture)
{
maxMultipleRTTs=i;
os::Printer::log("Missing render texture for MRT.", ELL_WARNING);
break;
}
if (targets[i].RenderTexture->getDriverType() != EDT_OPENGL)
{
maxMultipleRTTs=i;
os::Printer::log("Tried to set a texture not owned by this driver.", ELL_WARNING);
break;
}
// check for valid render target
if (!targets[i].RenderTexture->isRenderTarget() || !static_cast<COpenGLTexture*>(targets[i].RenderTexture)->isFrameBufferObject())
{
maxMultipleRTTs=i;
os::Printer::log("Tried to set a non FBO-RTT as render target.", ELL_WARNING);
break;
}
// check for valid size
if (rttSize != targets[i].RenderTexture->getSize())
{
maxMultipleRTTs=i;
os::Printer::log("Render target texture has wrong size.", ELL_WARNING);
break;
}
}
}
if (maxMultipleRTTs==0)
{
os::Printer::log("No valid MRTs.", ELL_ERROR);
return false;
}
// init FBO, if any
for (u32 i=0; i<maxMultipleRTTs; ++i)
{
if (targets[i].TargetType==ERT_RENDER_TEXTURE)
{
setRenderTarget(targets[i].RenderTexture, false, false, 0x0);
break;
}
}
// init other main buffer, if necessary
if (targets[0].TargetType!=ERT_RENDER_TEXTURE)
setRenderTarget(targets[0].TargetType, false, false, 0x0);
// attach other textures and store buffers into array
if (maxMultipleRTTs > 1)
{
CurrentTarget=ERT_MULTI_RENDER_TEXTURES;
core::array<GLenum> MRTs;
MRTs.set_used(maxMultipleRTTs);
for(u32 i = 0; i < maxMultipleRTTs; i++)
{
if (FeatureAvailable[IRR_EXT_draw_buffers2])
{
extGlColorMaskIndexed(i,
(targets[i].ColorMask & ECP_RED)?GL_TRUE:GL_FALSE,
(targets[i].ColorMask & ECP_GREEN)?GL_TRUE:GL_FALSE,
(targets[i].ColorMask & ECP_BLUE)?GL_TRUE:GL_FALSE,
(targets[i].ColorMask & ECP_ALPHA)?GL_TRUE:GL_FALSE);
if (targets[i].BlendEnable)
extGlEnableIndexed(GL_BLEND, i);
else
extGlDisableIndexed(GL_BLEND, i);
}
if (FeatureAvailable[IRR_AMD_draw_buffers_blend] || FeatureAvailable[IRR_ARB_draw_buffers_blend])
{
extGlBlendFuncIndexed(i, targets[i].BlendFuncSrc, targets[i].BlendFuncDst);
}
if (targets[i].TargetType==ERT_RENDER_TEXTURE)
{
GLenum attachment = GL_NONE;
#ifdef GL_EXT_framebuffer_object
// attach texture to FrameBuffer Object on Color [i]
attachment = GL_COLOR_ATTACHMENT0_EXT+i;
extGlFramebufferTexture2D(GL_FRAMEBUFFER_EXT, attachment, GL_TEXTURE_2D, static_cast<COpenGLTexture*>(targets[i].RenderTexture)->getOpenGLTextureName(), 0);
#endif
MRTs[i]=attachment;
}
else
{
switch(targets[i].TargetType)
{
case ERT_FRAME_BUFFER:
MRTs[i]=GL_BACK_LEFT;
break;
case ERT_STEREO_BOTH_BUFFERS:
MRTs[i]=GL_BACK;
break;
case ERT_STEREO_RIGHT_BUFFER:
MRTs[i]=GL_BACK_RIGHT;
break;
case ERT_STEREO_LEFT_BUFFER:
MRTs[i]=GL_BACK_LEFT;
break;
default:
MRTs[i]=GL_AUX0+(targets[i].TargetType-ERT_AUX_BUFFER0);
break;
}
}
}
extGlDrawBuffers(maxMultipleRTTs, MRTs.const_pointer());
}
clearBuffers(clearBackBuffer, clearZBuffer, false, color);
return true;
}
// returns the current size of the screen or rendertarget
const core::dimension2d<u32>& COpenGLDriver::getCurrentRenderTargetSize() const
{
if (CurrentRendertargetSize.Width == 0)
return ScreenSize;
else
return CurrentRendertargetSize;
}
//! Clears the ZBuffer.
void COpenGLDriver::clearZBuffer()
{
clearBuffers(false, true, false, 0x0);
}
//! Returns an image created from the last rendered frame.
IImage* COpenGLDriver::createScreenShot()
{
IImage* newImage = new CImage(ECF_R8G8B8, ScreenSize);
u8* pixels = static_cast<u8*>(newImage->lock());
if (!pixels)
{
newImage->drop();
return 0;
}
// allows to read pixels in top-to-bottom order
#ifdef GL_MESA_pack_invert
if (FeatureAvailable[IRR_MESA_pack_invert])
glPixelStorei(GL_PACK_INVERT_MESA, GL_TRUE);
#endif
// We want to read the front buffer to get the latest render finished.
glReadBuffer(GL_FRONT);
glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, GL_RGB, GL_UNSIGNED_BYTE, pixels);
glReadBuffer(GL_BACK);
#ifdef GL_MESA_pack_invert
if (FeatureAvailable[IRR_MESA_pack_invert])
glPixelStorei(GL_PACK_INVERT_MESA, GL_FALSE);
else
#endif
{
// opengl images are horizontally flipped, so we have to fix that here.
const s32 pitch=newImage->getPitch();
u8* p2 = pixels + (ScreenSize.Height - 1) * pitch;
u8* tmpBuffer = new u8[pitch];
for (u32 i=0; i < ScreenSize.Height; i += 2)
{
memcpy(tmpBuffer, pixels, pitch);
memcpy(pixels, p2, pitch);
memcpy(p2, tmpBuffer, pitch);
pixels += pitch;
p2 -= pitch;
}
delete [] tmpBuffer;
}
newImage->unlock();
if (testGLError())
{
newImage->drop();
return 0;
}
return newImage;
}
//! get depth texture for the given render target texture
ITexture* COpenGLDriver::createDepthTexture(ITexture* texture, bool shared)
{
if ((texture->getDriverType() != EDT_OPENGL) || (!texture->isRenderTarget()))
return 0;
COpenGLTexture* tex = static_cast<COpenGLTexture*>(texture);
if (!tex->isFrameBufferObject())
return 0;
if (shared)
{
for (u32 i=0; i<DepthTextures.size(); ++i)
{
if (DepthTextures[i]->getSize()==texture->getSize())
{
DepthTextures[i]->grab();
return DepthTextures[i];
}
}
DepthTextures.push_back(new COpenGLFBODepthTexture(texture->getSize(), "depth1", this));
return DepthTextures.getLast();
}
return (new COpenGLFBODepthTexture(texture->getSize(), "depth1", this));
}
void COpenGLDriver::removeDepthTexture(ITexture* texture)
{
for (u32 i=0; i<DepthTextures.size(); ++i)
{
if (texture==DepthTextures[i])
{
DepthTextures.erase(i);
return;
}
}
}
//! Set/unset a clipping plane.
bool COpenGLDriver::setClipPlane(u32 index, const core::plane3df& plane, bool enable)
{
if (index >= MaxUserClipPlanes)
return false;
UserClipPlanes[index].Plane=plane;
enableClipPlane(index, enable);
return true;
}
void COpenGLDriver::uploadClipPlane(u32 index)
{
// opengl needs an array of doubles for the plane equation
double clip_plane[4];
clip_plane[0] = UserClipPlanes[index].Plane.Normal.X;
clip_plane[1] = UserClipPlanes[index].Plane.Normal.Y;
clip_plane[2] = UserClipPlanes[index].Plane.Normal.Z;
clip_plane[3] = UserClipPlanes[index].Plane.D;
glClipPlane(GL_CLIP_PLANE0 + index, clip_plane);
}
//! Enable/disable a clipping plane.
void COpenGLDriver::enableClipPlane(u32 index, bool enable)
{
if (index >= MaxUserClipPlanes)
return;
if (enable)
{
if (!UserClipPlanes[index].Enabled)
{
uploadClipPlane(index);
glEnable(GL_CLIP_PLANE0 + index);
}
}
else
glDisable(GL_CLIP_PLANE0 + index);
UserClipPlanes[index].Enabled=enable;
}
core::dimension2du COpenGLDriver::getMaxTextureSize() const
{
return core::dimension2du(MaxTextureSize, MaxTextureSize);
}
} // end namespace
} // end namespace
#endif // _IRR_COMPILE_WITH_OPENGL_
namespace irr
{
namespace video
{
// -----------------------------------
// WINDOWS VERSION
// -----------------------------------
#ifdef _IRR_COMPILE_WITH_WINDOWS_DEVICE_
IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params,
io::IFileSystem* io, CIrrDeviceWin32* device)
{
#ifdef _IRR_COMPILE_WITH_OPENGL_
COpenGLDriver* ogl = new COpenGLDriver(params, io, device);
if (!ogl->initDriver(params, device))
{
ogl->drop();
ogl = 0;
}
return ogl;
#else
return 0;
#endif // _IRR_COMPILE_WITH_OPENGL_
}
#endif // _IRR_COMPILE_WITH_WINDOWS_DEVICE_
// -----------------------------------
// MACOSX VERSION
// -----------------------------------
#if defined(_IRR_COMPILE_WITH_OSX_DEVICE_)
IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params,
io::IFileSystem* io, CIrrDeviceMacOSX *device)
{
#ifdef _IRR_COMPILE_WITH_OPENGL_
return new COpenGLDriver(params, io, device);
#else
return 0;
#endif // _IRR_COMPILE_WITH_OPENGL_
}
#endif // _IRR_COMPILE_WITH_OSX_DEVICE_
// -----------------------------------
// X11 VERSION
// -----------------------------------
#ifdef _IRR_COMPILE_WITH_X11_DEVICE_
IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params,
io::IFileSystem* io, CIrrDeviceLinux* device)
{
#ifdef _IRR_COMPILE_WITH_OPENGL_
COpenGLDriver* ogl = new COpenGLDriver(params, io, device);
if (!ogl->initDriver(params, device))
{
ogl->drop();
ogl = 0;
}
return ogl;
#else
return 0;
#endif // _IRR_COMPILE_WITH_OPENGL_
}
#endif // _IRR_COMPILE_WITH_X11_DEVICE_
// -----------------------------------
// SDL VERSION
// -----------------------------------
#ifdef _IRR_COMPILE_WITH_SDL_DEVICE_
IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params,
io::IFileSystem* io, CIrrDeviceSDL* device)
{
#ifdef _IRR_COMPILE_WITH_OPENGL_
return new COpenGLDriver(params, io, device);
#else
return 0;
#endif // _IRR_COMPILE_WITH_OPENGL_
}
#endif // _IRR_COMPILE_WITH_SDL_DEVICE_
} // end namespace
} // end namespace