432 lines
14 KiB
C++
432 lines
14 KiB
C++
// Copyright (C) 2002-2008 Nikolaus Gebhardt
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#ifndef __S_MATERIAL_H_INCLUDED__
|
|
#define __S_MATERIAL_H_INCLUDED__
|
|
|
|
#include "SColor.h"
|
|
#include "matrix4.h"
|
|
#include "irrArray.h"
|
|
#include "EMaterialTypes.h"
|
|
#include "EMaterialFlags.h"
|
|
#include "SMaterialLayer.h"
|
|
|
|
namespace irr
|
|
{
|
|
namespace video
|
|
{
|
|
class ITexture;
|
|
|
|
//! Flag for EMT_ONETEXTURE_BLEND, ( BlendFactor ) BlendFunc = source * sourceFactor + dest * destFactor
|
|
enum E_BLEND_FACTOR
|
|
{
|
|
EBF_ZERO = 0, //!< src & dest (0, 0, 0, 0)
|
|
EBF_ONE, //!< src & dest (1, 1, 1, 1)
|
|
EBF_DST_COLOR, //!< src (destR, destG, destB, destA)
|
|
EBF_ONE_MINUS_DST_COLOR, //!< src (1-destR, 1-destG, 1-destB, 1-destA)
|
|
EBF_SRC_COLOR, //!< dest (srcR, srcG, srcB, srcA)
|
|
EBF_ONE_MINUS_SRC_COLOR, //!< dest (1-srcR, 1-srcG, 1-srcB, 1-srcA)
|
|
EBF_SRC_ALPHA, //!< src & dest (srcA, srcA, srcA, srcA)
|
|
EBF_ONE_MINUS_SRC_ALPHA, //!< src & dest (1-srcA, 1-srcA, 1-srcA, 1-srcA)
|
|
EBF_DST_ALPHA, //!< src & dest (destA, destA, destA, destA)
|
|
EBF_ONE_MINUS_DST_ALPHA, //!< src & dest (1-destA, 1-destA, 1-destA, 1-destA)
|
|
EBF_SRC_ALPHA_SATURATE //!< src (min(srcA, 1-destA), idem, ...)
|
|
};
|
|
|
|
//! MaterialTypeParam: e.g. DirectX: D3DTOP_MODULATE, D3DTOP_MODULATE2X, D3DTOP_MODULATE4X
|
|
enum E_MODULATE_FUNC
|
|
{
|
|
EMFN_MODULATE_1X = 1,
|
|
EMFN_MODULATE_2X = 2,
|
|
EMFN_MODULATE_4X = 4
|
|
};
|
|
|
|
//! EMT_ONETEXTURE_BLEND: pack srcFact & dstFact and Modulo to MaterialTypeParam
|
|
inline f32 pack_texureBlendFunc ( const E_BLEND_FACTOR srcFact, const E_BLEND_FACTOR dstFact, const E_MODULATE_FUNC modulate )
|
|
{
|
|
return (f32)(modulate << 16 | srcFact << 8 | dstFact);
|
|
}
|
|
|
|
//! EMT_ONETEXTURE_BLEND: unpack srcFact & dstFact and Modulo to MaterialTypeParam
|
|
inline void unpack_texureBlendFunc ( E_BLEND_FACTOR &srcFact, E_BLEND_FACTOR &dstFact,
|
|
E_MODULATE_FUNC &modulo, const f32 param )
|
|
{
|
|
const u32 state = (u32)param;
|
|
modulo = E_MODULATE_FUNC( ( state & 0x00FF0000 ) >> 16 );
|
|
srcFact = E_BLEND_FACTOR ( ( state & 0x0000FF00 ) >> 8 );
|
|
dstFact = E_BLEND_FACTOR ( ( state & 0x000000FF ) );
|
|
}
|
|
|
|
//! Maximum number of texture an SMaterial can have.
|
|
const u32 MATERIAL_MAX_TEXTURES = 4;
|
|
|
|
//! Struct for holding parameters for a material renderer
|
|
class SMaterial
|
|
{
|
|
public:
|
|
//! Default constructor. Creates a solid, lit material with white colors
|
|
SMaterial()
|
|
: MaterialType(EMT_SOLID), AmbientColor(255,255,255,255), DiffuseColor(255,255,255,255),
|
|
EmissiveColor(0,0,0,0), SpecularColor(255,255,255,255),
|
|
Shininess(0.0f), MaterialTypeParam(0.0f), MaterialTypeParam2(0.0f), Thickness(1.0f),
|
|
Wireframe(false), PointCloud(false), GouraudShading(true), Lighting(true),
|
|
ZWriteEnable(true), BackfaceCulling(true), FrontfaceCulling(false),
|
|
FogEnable(false), NormalizeNormals(false), ZBuffer(1)
|
|
{ }
|
|
|
|
//! Copy constructor
|
|
/** \param other Material to copy from. */
|
|
SMaterial(const SMaterial& other)
|
|
{
|
|
// These pointers are checked during assignment
|
|
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
|
|
TextureLayer[i].TextureMatrix = 0;
|
|
*this = other;
|
|
}
|
|
|
|
//! Assignment operator
|
|
/** \param other Material to copy from. */
|
|
SMaterial& operator=(const SMaterial& other)
|
|
{
|
|
// Check for self-assignment!
|
|
if (this == &other)
|
|
return *this;
|
|
|
|
MaterialType = other.MaterialType;
|
|
|
|
AmbientColor = other.AmbientColor;
|
|
DiffuseColor = other.DiffuseColor;
|
|
EmissiveColor = other.EmissiveColor;
|
|
SpecularColor = other.SpecularColor;
|
|
Shininess = other.Shininess;
|
|
MaterialTypeParam = other.MaterialTypeParam;
|
|
MaterialTypeParam2 = other.MaterialTypeParam2;
|
|
Thickness = other.Thickness;
|
|
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
|
|
{
|
|
TextureLayer[i] = other.TextureLayer[i];
|
|
}
|
|
|
|
Wireframe = other.Wireframe;
|
|
PointCloud = other.PointCloud;
|
|
GouraudShading = other.GouraudShading;
|
|
Lighting = other.Lighting;
|
|
ZWriteEnable = other.ZWriteEnable;
|
|
BackfaceCulling = other.BackfaceCulling;
|
|
FrontfaceCulling = other.FrontfaceCulling;
|
|
FogEnable = other.FogEnable;
|
|
NormalizeNormals = other.NormalizeNormals;
|
|
ZBuffer = other.ZBuffer;
|
|
|
|
return *this;
|
|
}
|
|
|
|
//! Type of the material. Specifies how everything is blended together
|
|
E_MATERIAL_TYPE MaterialType;
|
|
|
|
//! How much ambient light (a global light) is reflected by this material.
|
|
/** The default is full white, meaning objects are completely
|
|
globally illuminated. Reduce this if you want to see diffuse
|
|
or specular light effects. */
|
|
SColor AmbientColor;
|
|
|
|
//! How much diffuse light coming from a light source is reflected by this material.
|
|
/** The default is full white. */
|
|
SColor DiffuseColor;
|
|
|
|
//! Light emitted by this material. Default is to emit no light.
|
|
SColor EmissiveColor;
|
|
|
|
//! How much specular light (highlights from a light) is reflected.
|
|
/** The default is to reflect white specular light. See
|
|
SMaterial::Shininess on how to enable specular lights. */
|
|
SColor SpecularColor;
|
|
|
|
//! Value affecting the size of specular highlights.
|
|
/** A value of 20 is common. If set to 0, no specular
|
|
highlights are being used. To activate, simply set the
|
|
shininess of a material to a value other than 0:
|
|
\code
|
|
sceneNode->getMaterial(0).Shininess = 20.0f;
|
|
\endcode
|
|
|
|
You can change the color of the highlights using
|
|
\code
|
|
sceneNode->getMaterial(0).SpecularColor.set(255,255,255,255);
|
|
\endcode
|
|
|
|
The specular color of the dynamic lights
|
|
(SLight::SpecularColor) will influence the the highlight color
|
|
too, but they are set to a useful value by default when
|
|
creating the light scene node. Here is a simple example on how
|
|
to use specular highlights:
|
|
\code
|
|
// load and display mesh
|
|
scene::IAnimatedMeshSceneNode* node = smgr->addAnimatedMeshSceneNode(
|
|
smgr->getMesh("data/faerie.md2"));
|
|
node->setMaterialTexture(0, driver->getTexture("data/Faerie2.pcx")); // set diffuse texture
|
|
node->setMaterialFlag(video::EMF_LIGHTING, true); // enable dynamic lighting
|
|
node->getMaterial(0).Shininess = 20.0f; // set size of specular highlights
|
|
|
|
// add white light
|
|
scene::ILightSceneNode* light = smgr->addLightSceneNode(0,
|
|
core::vector3df(5,5,5), video::SColorf(1.0f, 1.0f, 1.0f));
|
|
\endcode */
|
|
f32 Shininess;
|
|
|
|
//! Free parameter, dependent on the material type.
|
|
/** Mostly ignored, used for example in EMT_PARALLAX_MAP_SOLID
|
|
and EMT_TRANSPARENT_ALPHA_CHANNEL. */
|
|
f32 MaterialTypeParam;
|
|
|
|
//! Second free parameter, dependent on the material type.
|
|
/** Mostly ignored. */
|
|
f32 MaterialTypeParam2;
|
|
|
|
//! Thickness of non-3dimensional elements such as lines and points.
|
|
f32 Thickness;
|
|
|
|
//! Texture layer array.
|
|
SMaterialLayer TextureLayer[MATERIAL_MAX_TEXTURES];
|
|
|
|
//! Draw as wireframe or filled triangles? Default: false
|
|
/** The user can access a material flag using
|
|
\code material.Wireframe=true \endcode
|
|
or \code material.setFlag(EMF_WIREFRAME, true); \endcode */
|
|
bool Wireframe;
|
|
|
|
//! Draw as point cloud or filled triangles? Default: false
|
|
bool PointCloud;
|
|
|
|
//! Flat or Gouraud shading? Default: true
|
|
bool GouraudShading;
|
|
|
|
//! Will this material be lighted? Default: true
|
|
bool Lighting;
|
|
|
|
//! Is the zbuffer writeable or is it read-only. Default: true.
|
|
/** This flag is ignored if the MaterialType is a transparent
|
|
type. */
|
|
bool ZWriteEnable;
|
|
|
|
//! Is backface culling enabled? Default: true
|
|
bool BackfaceCulling;
|
|
|
|
//! Is frontface culling enabled? Default: false
|
|
bool FrontfaceCulling;
|
|
|
|
//! Is fog enabled? Default: false
|
|
bool FogEnable;
|
|
|
|
//! Should normals be normalized? Default: false
|
|
bool NormalizeNormals;
|
|
|
|
//! Is the ZBuffer enabled? Default: 1
|
|
/** Changed from bool to integer
|
|
(0 == ZBuffer Off, 1 == ZBuffer LessEqual, 2 == ZBuffer Equal)
|
|
*/
|
|
char ZBuffer;
|
|
|
|
//! Gets the texture transformation matrix for level i
|
|
/** \param i The desired level. Must not be larger than MATERIAL_MAX_TEXTURES.
|
|
\return Texture matrix for texture level i. */
|
|
core::matrix4& getTextureMatrix(u32 i)
|
|
{
|
|
return TextureLayer[i].getTextureMatrix();
|
|
}
|
|
|
|
//! Gets the immutable texture transformation matrix for level i
|
|
/** \param i The desired level.
|
|
\return Texture matrix for texture level i, or identity matrix for levels larger than MATERIAL_MAX_TEXTURES. */
|
|
const core::matrix4& getTextureMatrix(u32 i) const
|
|
{
|
|
if (i<MATERIAL_MAX_TEXTURES)
|
|
return TextureLayer[i].getTextureMatrix();
|
|
else
|
|
return core::IdentityMatrix;
|
|
}
|
|
|
|
//! Sets the i-th texture transformation matrix
|
|
/** \param i The desired level.
|
|
\param mat Texture matrix for texture level i. */
|
|
void setTextureMatrix(u32 i, const core::matrix4& mat)
|
|
{
|
|
if (i>=MATERIAL_MAX_TEXTURES)
|
|
return;
|
|
TextureLayer[i].setTextureMatrix(mat);
|
|
}
|
|
|
|
//! Gets the i-th texture
|
|
/** \param i The desired level.
|
|
\return Texture for texture level i, if defined, else 0. */
|
|
ITexture* getTexture(u32 i) const
|
|
{
|
|
return i < MATERIAL_MAX_TEXTURES ? TextureLayer[i].Texture : 0;
|
|
}
|
|
|
|
//! Sets the i-th texture
|
|
/** If i>=MATERIAL_MAX_TEXTURES this setting will be ignored.
|
|
\param i The desired level.
|
|
\param tex Texture for texture level i. */
|
|
void setTexture(u32 i, ITexture* tex)
|
|
{
|
|
if (i>=MATERIAL_MAX_TEXTURES)
|
|
return;
|
|
TextureLayer[i].Texture = tex;
|
|
}
|
|
|
|
//! Sets the Material flag to the given value
|
|
/** \param flag The flag to be set.
|
|
\param value The new value for the flag. */
|
|
void setFlag(E_MATERIAL_FLAG flag, bool value)
|
|
{
|
|
switch (flag)
|
|
{
|
|
case EMF_WIREFRAME:
|
|
Wireframe = value; break;
|
|
case EMF_POINTCLOUD:
|
|
PointCloud = value; break;
|
|
case EMF_GOURAUD_SHADING:
|
|
GouraudShading = value; break;
|
|
case EMF_LIGHTING:
|
|
Lighting = value; break;
|
|
case EMF_ZBUFFER:
|
|
ZBuffer = value; break;
|
|
case EMF_ZWRITE_ENABLE:
|
|
ZWriteEnable = value; break;
|
|
case EMF_BACK_FACE_CULLING:
|
|
BackfaceCulling = value; break;
|
|
case EMF_FRONT_FACE_CULLING:
|
|
FrontfaceCulling = value; break;
|
|
case EMF_BILINEAR_FILTER:
|
|
{
|
|
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
|
|
TextureLayer[i].BilinearFilter = value;
|
|
}
|
|
break;
|
|
case EMF_TRILINEAR_FILTER:
|
|
{
|
|
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
|
|
TextureLayer[i].TrilinearFilter = value;
|
|
}
|
|
break;
|
|
case EMF_ANISOTROPIC_FILTER:
|
|
{
|
|
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
|
|
TextureLayer[i].AnisotropicFilter = value;
|
|
}
|
|
break;
|
|
case EMF_FOG_ENABLE:
|
|
FogEnable = value; break;
|
|
case EMF_NORMALIZE_NORMALS:
|
|
NormalizeNormals = value; break;
|
|
case EMF_TEXTURE_WRAP:
|
|
{
|
|
for (u32 i=0; i<MATERIAL_MAX_TEXTURES; ++i)
|
|
TextureLayer[i].TextureWrap = (E_TEXTURE_CLAMP)value;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
//! Gets the Material flag
|
|
/** \param flag The flag to query.
|
|
\return The current value of the flag. */
|
|
bool getFlag(E_MATERIAL_FLAG flag) const
|
|
{
|
|
switch (flag)
|
|
{
|
|
case EMF_WIREFRAME:
|
|
return Wireframe;
|
|
case EMF_POINTCLOUD:
|
|
return PointCloud;
|
|
case EMF_GOURAUD_SHADING:
|
|
return GouraudShading;
|
|
case EMF_LIGHTING:
|
|
return Lighting;
|
|
case EMF_ZBUFFER:
|
|
return ZBuffer!=0;
|
|
case EMF_ZWRITE_ENABLE:
|
|
return ZWriteEnable;
|
|
case EMF_BACK_FACE_CULLING:
|
|
return BackfaceCulling;
|
|
case EMF_FRONT_FACE_CULLING:
|
|
return FrontfaceCulling;
|
|
case EMF_BILINEAR_FILTER:
|
|
return TextureLayer[0].BilinearFilter;
|
|
case EMF_TRILINEAR_FILTER:
|
|
return TextureLayer[0].TrilinearFilter;
|
|
case EMF_ANISOTROPIC_FILTER:
|
|
return TextureLayer[0].AnisotropicFilter;
|
|
case EMF_FOG_ENABLE:
|
|
return FogEnable;
|
|
case EMF_NORMALIZE_NORMALS:
|
|
return NormalizeNormals;
|
|
case EMF_TEXTURE_WRAP:
|
|
return !(TextureLayer[0].TextureWrap ||
|
|
TextureLayer[1].TextureWrap ||
|
|
TextureLayer[2].TextureWrap ||
|
|
TextureLayer[3].TextureWrap);
|
|
case EMF_MATERIAL_FLAG_COUNT:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//! Inequality operator
|
|
/** \param b Material to compare to.
|
|
\return True if the materials differ, else false. */
|
|
inline bool operator!=(const SMaterial& b) const
|
|
{
|
|
bool different =
|
|
MaterialType != b.MaterialType ||
|
|
AmbientColor != b.AmbientColor ||
|
|
DiffuseColor != b.DiffuseColor ||
|
|
EmissiveColor != b.EmissiveColor ||
|
|
SpecularColor != b.SpecularColor ||
|
|
Shininess != b.Shininess ||
|
|
MaterialTypeParam != b.MaterialTypeParam ||
|
|
MaterialTypeParam2 != b.MaterialTypeParam2 ||
|
|
Thickness != b.Thickness ||
|
|
Wireframe != b.Wireframe ||
|
|
PointCloud != b.PointCloud ||
|
|
GouraudShading != b.GouraudShading ||
|
|
Lighting != b.Lighting ||
|
|
ZBuffer != b.ZBuffer ||
|
|
ZWriteEnable != b.ZWriteEnable ||
|
|
BackfaceCulling != b.BackfaceCulling ||
|
|
FrontfaceCulling != b.FrontfaceCulling ||
|
|
FogEnable != b.FogEnable ||
|
|
NormalizeNormals != b.NormalizeNormals;
|
|
for (u32 i=0; (i<MATERIAL_MAX_TEXTURES) && !different; ++i)
|
|
{
|
|
different |= (TextureLayer[i] != b.TextureLayer[i]);
|
|
}
|
|
return different;
|
|
}
|
|
|
|
//! Equality operator
|
|
/** \param b Material to compare to.
|
|
\return True if the materials are equal, else false. */
|
|
inline bool operator==(const SMaterial& b) const
|
|
{ return !(b!=*this); }
|
|
|
|
bool isTransparent() const
|
|
{
|
|
return MaterialType==EMT_TRANSPARENT_ADD_COLOR ||
|
|
MaterialType==EMT_TRANSPARENT_ALPHA_CHANNEL ||
|
|
MaterialType==EMT_TRANSPARENT_VERTEX_ALPHA ||
|
|
MaterialType==EMT_TRANSPARENT_REFLECTION_2_LAYER;
|
|
}
|
|
};
|
|
|
|
} // end namespace video
|
|
} // end namespace irr
|
|
|
|
#endif
|
|
|