Moved material enums into separate files. Disabled randr again, was accidentially activated.

git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/trunk@984 dfc29bdd-3216-0410-991c-e03cc46cb475
master
hybrid 2007-09-19 14:35:35 +00:00
parent df946a1ce6
commit 63f28cf5ff
14 changed files with 330 additions and 291 deletions

View File

@ -9,6 +9,7 @@ namespace irr
{ {
namespace video namespace video
{ {
//! An enum for all types of drivers the Irrlicht Engine supports. //! An enum for all types of drivers the Irrlicht Engine supports.
enum E_DRIVER_TYPE enum E_DRIVER_TYPE
{ {

74
include/EMaterialFlags.h Normal file
View File

@ -0,0 +1,74 @@
// Copyright (C) 2002-2007 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __E_MATERIAL_FLAGS_H_INCLUDED__
#define __E_MATERIAL_FLAGS_H_INCLUDED__
namespace irr
{
namespace video
{
//! Material flags
enum E_MATERIAL_FLAG
{
//! Draw as wireframe or filled triangles? Default: false
EMF_WIREFRAME = 0,
//! Draw as point cloud or filled triangles? Default: false
EMF_POINTCLOUD,
//! Flat or Gouraud shading? Default: true
EMF_GOURAUD_SHADING,
//! Will this material be lighted? Default: true
EMF_LIGHTING,
//! Is the ZBuffer enabled? Default: true
EMF_ZBUFFER,
//! May be written to the zbuffer or is it readonly. Default: true
//! This flag is ignored, if the material type is a transparent type.
EMF_ZWRITE_ENABLE,
//! Is backfaceculling enabled? Default: true
EMF_BACK_FACE_CULLING,
//! Is bilinear filtering enabled? Default: true
EMF_BILINEAR_FILTER,
//! Is trilinear filtering enabled? Default: false
//! If the trilinear filter flag is enabled,
//! the bilinear filtering flag is ignored.
EMF_TRILINEAR_FILTER,
//! Is anisotropic filtering? Default: false
//! In Irrlicht you can use anisotropic texture filtering in
//! conjunction with bilinear or trilinear texture filtering
//! to improve rendering results. Primitives will look less
//! blurry with this flag switched on.
EMF_ANISOTROPIC_FILTER,
//! Is fog enabled? Default: false
EMF_FOG_ENABLE,
//! Normalizes normals.You can enable this if you need
//! to scale a dynamic lighted model. Usually, its normals will get scaled
//! too then and it will get darker. If you enable the EMF_NORMALIZE_NORMALS flag,
//! the normals will be normalized again, and the model will look as bright as it should.
EMF_NORMALIZE_NORMALS,
//! Access to all layers texture wrap settings. Overwrites separate layer settings.
EMF_TEXTURE_WRAP,
//! This is not a flag, but a value indicating how much flags there are.
EMF_MATERIAL_FLAG_COUNT
};
} // end namespace video
} // end namespace irr
#endif // __E_MATERIAL_FLAGS_H_INCLUDED__

223
include/EMaterialTypes.h Normal file
View File

@ -0,0 +1,223 @@
// Copyright (C) 2002-2007 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine".
// For conditions of distribution and use, see copyright notice in irrlicht.h
#ifndef __E_MATERIAL_TYPES_H_INCLUDED__
#define __E_MATERIAL_TYPES_H_INCLUDED__
namespace irr
{
namespace video
{
//! Abstracted and easy to use fixed function/programmable pipeline material modes.
enum E_MATERIAL_TYPE
{
//! Standard solid material. Only first texture is used, which is
//! supposed to be the diffuse material.
EMT_SOLID = 0,
//! Solid material with 2 texture layers. The second is blended onto the
//! first using the alpha value of the vertex colors.
//! This material is currently not implemented in OpenGL, but it
//! works with DirectX.
EMT_SOLID_2_LAYER,
//! Material type with standard lightmap technique:
//! There should be 2 textures: The first texture layer is a diffuse map,
//! the second is a light map. Vertex light is ignored.
EMT_LIGHTMAP,
//! Material type with lightmap technique like EMT_LIGHTMAP, but
//! lightmap and diffuse texture are not modulated, but added instead.
EMT_LIGHTMAP_ADD,
//! Material type with standard lightmap technique:
//! There should be 2 textures: The first texture layer is a diffuse map,
//! the second is a light map. Vertex light is ignored.
//! The texture colors are effectively multiplyied by 2 for brightening.
//! like known in DirectX as D3DTOP_MODULATE2X.
EMT_LIGHTMAP_M2,
//! Material type with standard lightmap technique:
//! There should be 2 textures: The first texture layer is a diffuse map,
//! the second is a light map. Vertex light is ignored.
//! The texture colors are effectively multiplyied by 4 for brightening.
//! like known in DirectX as D3DTOP_MODULATE4X.
EMT_LIGHTMAP_M4,
//! Like EMT_LIGHTMAP, but also supports dynamic lighting.
EMT_LIGHTMAP_LIGHTING,
//! Like EMT_LIGHTMAP_M2, but also supports dynamic lighting.
EMT_LIGHTMAP_LIGHTING_M2,
//! Like EMT_LIGHTMAP_4, but also supports dynamic lighting.
EMT_LIGHTMAP_LIGHTING_M4,
//! Detail mapped material. The first texture is diffuse color map, the
//! second is added to this and usually displayed with a bigger scale value
//! so that it adds more detail. The detail map is added to the diffuse map using
//! ADD_SIGNED, so that it is possible to add and substract color from the diffuse
//! map. For example a value of (127,127,127) will not change the appearance of
//! the diffuse map at all.
//! Often used for terrain rendering.
EMT_DETAIL_MAP,
//! Makes the material look like it was reflection the environment
//! around it. To make this possible, a texture called 'sphere map'
//! is used, which must be set as Textures[0].
EMT_SPHERE_MAP,
//! A reflecting material with an
//! optional additional non reflecting texture layer. The reflection
//! map should be set as Texture 1.
EMT_REFLECTION_2_LAYER,
//! A transparent material. Only the first texture is used.
//! The new color is calculated by simply adding the source color and
//! the dest color. This means if for example a billboard using a texture with
//! black background and a red circle on it is drawn with this material, the
//! result is that only the red circle will be drawn a little bit transparent,
//! and everything which was black is 100% transparent and not visible.
//! This material type is useful for e.g. particle effects.
EMT_TRANSPARENT_ADD_COLOR,
//! Makes the material transparent based on the texture alpha channel.
//! The final color is blended together from the destination color and the
//! texture color, using the alpha channel value as blend factor.
//! Only first texture is used. If you are using this material with small
//! textures, it is a good idea to load the texture in 32 bit
//! mode (video::IVideoDriver::setTextureCreationFlag()).
//! Also, an alpha ref is used, which can be manipulated using SMaterial::MaterialTypeParam.
//! If set to 0, the alpha ref gets its default value which is 0.5f and which means
//! that pixels with an alpha value >127 will be written, others not. In other, simple
//! words: this value controls how sharp the edges become when going from a
//! transparent to a solid spot on the texture.
EMT_TRANSPARENT_ALPHA_CHANNEL,
//! Makes the material transparent based on the texture alpha channel.
//! If the alpha channel value is greater than 127, a pixel is written to the
//! target, otherwise not. This material does not use alpha blending
//! and is a lot faster than EMT_TRANSPARENT_ALPHA_CHANNEL. It
//! is ideal for drawing stuff like leafes of plants, because the borders
//! are not blurry but sharp.
//! Only first texture is used. If you are using this material with small
//! textures and 3d object, it is a good idea to load the texture in 32 bit
//! mode (video::IVideoDriver::setTextureCreationFlag()).
EMT_TRANSPARENT_ALPHA_CHANNEL_REF,
//! Makes the material transparent based on the vertex alpha value.
EMT_TRANSPARENT_VERTEX_ALPHA,
//! A transparent reflecting material with an
//! optional additional non reflecting texture layer. The reflection
//! map should be set as Texture 1. The transparency depends on the
//! alpha value in the vertex colors. A texture which will not reflect
//! can be set als Texture 2.
//! Please note that this material type is currently not 100% implemented
//! in OpenGL. It works in Direct3D.
EMT_TRANSPARENT_REFLECTION_2_LAYER,
//! A solid normal map renderer. First texture is the color map, the
//! second should be the normal map. Note that you should use this material
//! only when drawing geometry consisting of vertices of type S3DVertexTangents
//! (EVT_TANGENTS). You can convert any mesh into this format using
//! IMeshManipulator::createMeshWithTangents() (See SpecialFX2 Tutorial).
//! This shader runs on vertex shader 1.1 and pixel shader 1.1 capable hardware and
//! falls back on a fixed function lighted material if this hardware is not available.
//! Only two lights are supported by this shader, if there are more, the nearest two
//! are chosen. Currently, this shader is only implemented for the D3D8 and D3D9 renderers.
EMT_NORMAL_MAP_SOLID,
//! A transparent normal map renderer. First texture is the color map, the
//! second should be the normal map. Note that you should use this material
//! only when drawing geometry consisting of vertices of type S3DVertexTangents
//! (EVT_TANGENTS). You can convert any mesh into this format using
//! IMeshManipulator::createMeshWithTangents() (See SpecialFX2 Tutorial).
//! This shader runs on vertex shader 1.1 and pixel shader 1.1 capable hardware and
//! falls back on a fixed function lighted material if this hardware is not available.
//! Only two lights are supported by this shader, if there are more, the nearest two
//! are chosen. Currently, this shader is only implemented for the D3D8 and D3D9 renderers.
EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR,
//! A transparent (based on the vertex alpha value) normal map renderer.
//! First texture is the color map, the
//! second should be the normal map. Note that you should use this material
//! only when drawing geometry consisting of vertices of type S3DVertexTangents
//! (EVT_TANGENTS). You can convert any mesh into this format using
//! IMeshManipulator::createMeshWithTangents() (See SpecialFX2 Tutorial).
//! This shader runs on vertex shader 1.1 and pixel shader 1.1 capable hardware and
//! falls back on a fixed function lighted material if this hardware is not available.
//! Only two lights are supported by this shader, if there are more, the nearest two
//! are chosen. Currently, this shader is only implemented for the D3D8 and D3D9 renderers.
EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA,
//! Just like EMT_NORMAL_MAP_SOLID, but uses parallax mapping too, which
//! looks a lot more realistic. This only works when the hardware supports at
//! least vertex shader 1.1 and pixel shader 1.4.
//! First texture is the color map, the second should be the normal map.
//! The normal map texture should contain the height value in the
//! alpha component. The IVideoDriver::makeNormalMapTexture() method writes
//! this value automaticly when creating normal maps from a heightmap when using a 32 bit
//! texture.
//! The height scale of the material (affecting the bumpiness) is being controlled
//! by the SMaterial::MaterialTypeParam member.
//! If set to zero, the default value (0.02f) will be applied. Otherwise
//! the value set in SMaterial::MaterialTypeParam is taken. This value depends on with which
//! scale the texture is mapped on the material. Too high or low values of MaterialTypeParam
//! can result in strange artifacts.
EMT_PARALLAX_MAP_SOLID,
//! A material just like EMT_PARALLAX_MAP_SOLID, but it is transparent, using
//! EMT_TRANSPARENT_ADD_COLOR as base material.
EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR,
//! A material just like EMT_PARALLAX_MAP_SOLID, but it is transparent, using
//! EMT_TRANSPARENT_VERTEX_ALPHA as base material.
EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA,
//! BlendFunc = source * sourceFactor + dest * destFactor ( E_BLEND_FUNC )
//! Using only Textures[0]. generic Blender
EMT_ONETEXTURE_BLEND,
//! This value is not used. It only forces this enumeration to compile in 32 bit.
EMT_FORCE_32BIT = 0x7fffffff
};
//! Array holding the built in material type names
const char* const sBuiltInMaterialTypeNames[] =
{
"solid",
"solid_2layer",
"lightmap",
"lightmap_add",
"lightmap_m2",
"lightmap_m4",
"lightmap_light",
"lightmap_light_m2",
"lightmap_light_m4",
"detail_map",
"sphere_map",
"reflection_2layer",
"trans_add",
"trans_alphach",
"trans_alphach_ref",
"trans_vertex_alpha",
"trans_reflection_2layer",
"normalmap_solid",
"normalmap_trans_add",
"normalmap_trans_vertexalpha",
"parallaxmap_solid",
"parallaxmap_trans_add",
"parallaxmap_trans_vertexalpha",
"onetexture_blend",
0
};
} // end namespace video
} // end namespace irr
#endif // __E_MATERIAL_TYPES_H_INCLUDED__

View File

@ -10,7 +10,6 @@ namespace irr
namespace scene namespace scene
{ {
//! An enumeration for all supported types of built-in mesh writers //! An enumeration for all supported types of built-in mesh writers
/** A scene mesh writers is represented by a four character code /** A scene mesh writers is represented by a four character code
such as 'irrm' or 'coll' instead of simple numbers, to avoid such as 'irrm' or 'coll' instead of simple numbers, to avoid
@ -41,7 +40,6 @@ namespace scene
EMWF_WRITE_COMPRESSED = 0x2 EMWF_WRITE_COMPRESSED = 0x2
}; };
} // end namespace scene } // end namespace scene
} // end namespace irr } // end namespace irr

View File

@ -9,6 +9,7 @@ namespace irr
{ {
namespace scene namespace scene
{ {
//! An enumeration for all types of built-in scene node animators //! An enumeration for all types of built-in scene node animators
enum ESCENE_NODE_ANIMATOR_TYPE enum ESCENE_NODE_ANIMATOR_TYPE
{ {

View File

@ -11,6 +11,7 @@ namespace irr
{ {
namespace scene namespace scene
{ {
//! An enumeration for all types of built-in scene nodes //! An enumeration for all types of built-in scene nodes
/** A scene node type is represented by a four character code /** A scene node type is represented by a four character code
such as 'cube' or 'mesh' instead of simple numbers, to avoid such as 'cube' or 'mesh' instead of simple numbers, to avoid

View File

@ -9,6 +9,7 @@ namespace irr
{ {
namespace scene namespace scene
{ {
//! enumeration for patch sizes specifying the size of patches in the TerrainSceneNode //! enumeration for patch sizes specifying the size of patches in the TerrainSceneNode
enum E_TERRAIN_PATCH_SIZE enum E_TERRAIN_PATCH_SIZE
{ {

View File

@ -100,7 +100,7 @@ define out. */
//! to remove the dependencies such that Irrlicht will compile on those systems, too. //! to remove the dependencies such that Irrlicht will compile on those systems, too.
#if defined(_IRR_LINUX_PLATFORM_) #if defined(_IRR_LINUX_PLATFORM_)
#define _IRR_LINUX_X11_VIDMODE_ #define _IRR_LINUX_X11_VIDMODE_
#define _IRR_LINUX_X11_RANDR_ //#define _IRR_LINUX_X11_RANDR_
#endif #endif
//! Define _IRR_COMPILE_WITH_GUI_ to compile the engine with the built-in GUI //! Define _IRR_COMPILE_WITH_GUI_ to compile the engine with the built-in GUI

View File

@ -8,6 +8,8 @@
#include "SColor.h" #include "SColor.h"
#include "matrix4.h" #include "matrix4.h"
#include "irrArray.h" #include "irrArray.h"
#include "EMaterialTypes.h"
#include "EMaterialFlags.h"
namespace irr namespace irr
{ {
@ -15,212 +17,6 @@ namespace video
{ {
class ITexture; class ITexture;
//! Abstracted and easy to use fixed function/programmable pipeline material modes.
enum E_MATERIAL_TYPE
{
//! Standard solid material. Only first texture is used, which is
//! supposed to be the diffuse material.
EMT_SOLID = 0,
//! Solid material with 2 texture layers. The second is blended onto the
//! first using the alpha value of the vertex colors.
//! This material is currently not implemented in OpenGL, but it
//! works with DirectX.
EMT_SOLID_2_LAYER,
//! Material type with standard lightmap technique:
//! There should be 2 textures: The first texture layer is a diffuse map,
//! the second is a light map. Vertex light is ignored.
EMT_LIGHTMAP,
//! Material type with lightmap technique like EMT_LIGHTMAP, but
//! lightmap and diffuse texture are not modulated, but added instead.
EMT_LIGHTMAP_ADD,
//! Material type with standard lightmap technique:
//! There should be 2 textures: The first texture layer is a diffuse map,
//! the second is a light map. Vertex light is ignored.
//! The texture colors are effectively multiplyied by 2 for brightening.
//! like known in DirectX as D3DTOP_MODULATE2X.
EMT_LIGHTMAP_M2,
//! Material type with standard lightmap technique:
//! There should be 2 textures: The first texture layer is a diffuse map,
//! the second is a light map. Vertex light is ignored.
//! The texture colors are effectively multiplyied by 4 for brightening.
//! like known in DirectX as D3DTOP_MODULATE4X.
EMT_LIGHTMAP_M4,
//! Like EMT_LIGHTMAP, but also supports dynamic lighting.
EMT_LIGHTMAP_LIGHTING,
//! Like EMT_LIGHTMAP_M2, but also supports dynamic lighting.
EMT_LIGHTMAP_LIGHTING_M2,
//! Like EMT_LIGHTMAP_4, but also supports dynamic lighting.
EMT_LIGHTMAP_LIGHTING_M4,
//! Detail mapped material. The first texture is diffuse color map, the
//! second is added to this and usually displayed with a bigger scale value
//! so that it adds more detail. The detail map is added to the diffuse map using
//! ADD_SIGNED, so that it is possible to add and substract color from the diffuse
//! map. For example a value of (127,127,127) will not change the appearance of
//! the diffuse map at all.
//! Often used for terrain rendering.
EMT_DETAIL_MAP,
//! Makes the material look like it was reflection the environment
//! around it. To make this possible, a texture called 'sphere map'
//! is used, which must be set as Textures[0].
EMT_SPHERE_MAP,
//! A reflecting material with an
//! optional additional non reflecting texture layer. The reflection
//! map should be set as Texture 1.
EMT_REFLECTION_2_LAYER,
//! A transparent material. Only the first texture is used.
//! The new color is calculated by simply adding the source color and
//! the dest color. This means if for example a billboard using a texture with
//! black background and a red circle on it is drawn with this material, the
//! result is that only the red circle will be drawn a little bit transparent,
//! and everything which was black is 100% transparent and not visible.
//! This material type is useful for e.g. particle effects.
EMT_TRANSPARENT_ADD_COLOR,
//! Makes the material transparent based on the texture alpha channel.
//! The final color is blended together from the destination color and the
//! texture color, using the alpha channel value as blend factor.
//! Only first texture is used. If you are using this material with small
//! textures, it is a good idea to load the texture in 32 bit
//! mode (video::IVideoDriver::setTextureCreationFlag()).
//! Also, an alpha ref is used, which can be manipulated using SMaterial::MaterialTypeParam.
//! If set to 0, the alpha ref gets its default value which is 0.5f and which means
//! that pixels with an alpha value >127 will be written, others not. In other, simple
//! words: this value controls how sharp the edges become when going from a
//! transparent to a solid spot on the texture.
EMT_TRANSPARENT_ALPHA_CHANNEL,
//! Makes the material transparent based on the texture alpha channel.
//! If the alpha channel value is greater than 127, a pixel is written to the
//! target, otherwise not. This material does not use alpha blending
//! and is a lot faster than EMT_TRANSPARENT_ALPHA_CHANNEL. It
//! is ideal for drawing stuff like leafes of plants, because the borders
//! are not blurry but sharp.
//! Only first texture is used. If you are using this material with small
//! textures and 3d object, it is a good idea to load the texture in 32 bit
//! mode (video::IVideoDriver::setTextureCreationFlag()).
EMT_TRANSPARENT_ALPHA_CHANNEL_REF,
//! Makes the material transparent based on the vertex alpha value.
EMT_TRANSPARENT_VERTEX_ALPHA,
//! A transparent reflecting material with an
//! optional additional non reflecting texture layer. The reflection
//! map should be set as Texture 1. The transparency depends on the
//! alpha value in the vertex colors. A texture which will not reflect
//! can be set als Texture 2.
//! Please note that this material type is currently not 100% implemented
//! in OpenGL. It works in Direct3D.
EMT_TRANSPARENT_REFLECTION_2_LAYER,
//! A solid normal map renderer. First texture is the color map, the
//! second should be the normal map. Note that you should use this material
//! only when drawing geometry consisting of vertices of type S3DVertexTangents
//! (EVT_TANGENTS). You can convert any mesh into this format using
//! IMeshManipulator::createMeshWithTangents() (See SpecialFX2 Tutorial).
//! This shader runs on vertex shader 1.1 and pixel shader 1.1 capable hardware and
//! falls back on a fixed function lighted material if this hardware is not available.
//! Only two lights are supported by this shader, if there are more, the nearest two
//! are chosen. Currently, this shader is only implemented for the D3D8 and D3D9 renderers.
EMT_NORMAL_MAP_SOLID,
//! A transparent normal map renderer. First texture is the color map, the
//! second should be the normal map. Note that you should use this material
//! only when drawing geometry consisting of vertices of type S3DVertexTangents
//! (EVT_TANGENTS). You can convert any mesh into this format using
//! IMeshManipulator::createMeshWithTangents() (See SpecialFX2 Tutorial).
//! This shader runs on vertex shader 1.1 and pixel shader 1.1 capable hardware and
//! falls back on a fixed function lighted material if this hardware is not available.
//! Only two lights are supported by this shader, if there are more, the nearest two
//! are chosen. Currently, this shader is only implemented for the D3D8 and D3D9 renderers.
EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR,
//! A transparent (based on the vertex alpha value) normal map renderer.
//! First texture is the color map, the
//! second should be the normal map. Note that you should use this material
//! only when drawing geometry consisting of vertices of type S3DVertexTangents
//! (EVT_TANGENTS). You can convert any mesh into this format using
//! IMeshManipulator::createMeshWithTangents() (See SpecialFX2 Tutorial).
//! This shader runs on vertex shader 1.1 and pixel shader 1.1 capable hardware and
//! falls back on a fixed function lighted material if this hardware is not available.
//! Only two lights are supported by this shader, if there are more, the nearest two
//! are chosen. Currently, this shader is only implemented for the D3D8 and D3D9 renderers.
EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA,
//! Just like EMT_NORMAL_MAP_SOLID, but uses parallax mapping too, which
//! looks a lot more realistic. This only works when the hardware supports at
//! least vertex shader 1.1 and pixel shader 1.4.
//! First texture is the color map, the second should be the normal map.
//! The normal map texture should contain the height value in the
//! alpha component. The IVideoDriver::makeNormalMapTexture() method writes
//! this value automaticly when creating normal maps from a heightmap when using a 32 bit
//! texture.
//! The height scale of the material (affecting the bumpiness) is being controlled
//! by the SMaterial::MaterialTypeParam member.
//! If set to zero, the default value (0.02f) will be applied. Otherwise
//! the value set in SMaterial::MaterialTypeParam is taken. This value depends on with which
//! scale the texture is mapped on the material. Too high or low values of MaterialTypeParam
//! can result in strange artifacts.
EMT_PARALLAX_MAP_SOLID,
//! A material just like EMT_PARALLAX_MAP_SOLID, but it is transparent, using
//! EMT_TRANSPARENT_ADD_COLOR as base material.
EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR,
//! A material just like EMT_PARALLAX_MAP_SOLID, but it is transparent, using
//! EMT_TRANSPARENT_VERTEX_ALPHA as base material.
EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA,
//! BlendFunc = source * sourceFactor + dest * destFactor ( E_BLEND_FUNC )
//! Using only Textures[0]. generic Blender
EMT_ONETEXTURE_BLEND,
//! This value is not used. It only forces this enumeration to compile in 32 bit.
EMT_FORCE_32BIT = 0x7fffffff
};
//! Array holding the built in material type names
const char* const sBuiltInMaterialTypeNames[] =
{
"solid",
"solid_2layer",
"lightmap",
"lightmap_add",
"lightmap_m2",
"lightmap_m4",
"lightmap_light",
"lightmap_light_m2",
"lightmap_light_m4",
"detail_map",
"sphere_map",
"reflection_2layer",
"trans_add",
"trans_alphach",
"trans_alphach_ref",
"trans_vertex_alpha",
"trans_reflection_2layer",
"normalmap_solid",
"normalmap_trans_add",
"normalmap_trans_vertexalpha",
"parallaxmap_solid",
"parallaxmap_trans_add",
"parallaxmap_trans_vertexalpha",
"onetexture_blend",
0
};
//! Flag for EMT_ONETEXTURE_BLEND, ( BlendFactor ) //! Flag for EMT_ONETEXTURE_BLEND, ( BlendFactor )
//! BlendFunc = source * sourceFactor + dest * destFactor //! BlendFunc = source * sourceFactor + dest * destFactor
enum E_BLEND_FACTOR enum E_BLEND_FACTOR
@ -282,62 +78,6 @@ namespace video
dstFact = E_BLEND_FACTOR ( ( state & 0x000000FF ) ); dstFact = E_BLEND_FACTOR ( ( state & 0x000000FF ) );
} }
//! Material flags
enum E_MATERIAL_FLAG
{
//! Draw as wireframe or filled triangles? Default: false
EMF_WIREFRAME = 0,
//! Draw as point cloud or filled triangles? Default: false
EMF_POINTCLOUD,
//! Flat or Gouraud shading? Default: true
EMF_GOURAUD_SHADING,
//! Will this material be lighted? Default: true
EMF_LIGHTING,
//! Is the ZBuffer enabled? Default: true
EMF_ZBUFFER,
//! May be written to the zbuffer or is it readonly. Default: true
//! This flag is ignored, if the material type is a transparent type.
EMF_ZWRITE_ENABLE,
//! Is backfaceculling enabled? Default: true
EMF_BACK_FACE_CULLING,
//! Is bilinear filtering enabled? Default: true
EMF_BILINEAR_FILTER,
//! Is trilinear filtering enabled? Default: false
//! If the trilinear filter flag is enabled,
//! the bilinear filtering flag is ignored.
EMF_TRILINEAR_FILTER,
//! Is anisotropic filtering? Default: false
//! In Irrlicht you can use anisotropic texture filtering in
//! conjunction with bilinear or trilinear texture filtering
//! to improve rendering results. Primitives will look less
//! blurry with this flag switched on.
EMF_ANISOTROPIC_FILTER,
//! Is fog enabled? Default: false
EMF_FOG_ENABLE,
//! Normalizes normals.You can enable this if you need
//! to scale a dynamic lighted model. Usually, its normals will get scaled
//! too then and it will get darker. If you enable the EMF_NORMALIZE_NORMALS flag,
//! the normals will be normalized again, and the model will look as bright as it should.
EMF_NORMALIZE_NORMALS,
//! Access to all layers texture wrap settings. Overwrites separate layer settings.
EMF_TEXTURE_WRAP,
//! This is not a flag, but a value indicating how much flags there are.
EMF_MATERIAL_FLAG_COUNT
};
//! Maximum number of texture an SMaterial can have. //! Maximum number of texture an SMaterial can have.
const u32 MATERIAL_MAX_TEXTURES = 4; const u32 MATERIAL_MAX_TEXTURES = 4;